Skip to main content

Advertisement

Log in

Association of influenza epidemics with global climate variability

  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The reasons for the seasonality and annual changes in the impact of influenza epidemics remain poorly understood. We investigated the covariations between a major component of climate, namely the El Niño Southern Oscillation (ENSO), and indicators of the impact of influenza, as measured by morbidity, excess mortality and viral subtypes collected in France during the period 1971–2002. We show that both the circulating subtype and the magnitude of ENSO are associated with the impact of influenza epidemics. Recognition of this association could lead to better understanding of the mechanisms of emergence of influenza epidemics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dobson R. Flu rates in Wales highest for a decade. Br Med J 2000; 320: 138.

    Google Scholar 

  2. Christie B. Scotland facing worst flu outbreak for six years. Br Med J 2000; 320: 138.

    Google Scholar 

  3. Woodman R. Doctors and politicians clash over size of flu problem. Br Med J 2000; 320: 138.

    Google Scholar 

  4. Monto AS. Individual and community impact of influenza. Pharmacoeconomics 1999; 16: 1–6

    Google Scholar 

  5. Cox NJ, Subbarao K. Influenza. Lancet 1999; 354: 1277–1282.

    Google Scholar 

  6. Simonsen L, Clarke MJ, Williamson GD, Stroup DF, Arden NH, Schonberger LB. The impact of influenza epidemics on mortality: introducing a severity index. Am J Public Health 1997; 87: 1944–1950.

    Google Scholar 

  7. Carrat F, Valleron AJ. Influenza mortality among the elderly in France, 1980–90: How many deaths may have been avoided through vaccination? J Epidemiol Commun Health 1995; 49: 419–425.

    Google Scholar 

  8. Fleming DM, Zambon M, Bartelds AI, de Jong JC. The duration and magnitude of influenza epidemics: A study of surveillance data from sentinel general practices in England, Wales and The Netherlands. Eur J Epidemiol 1999; 15: 467–473.

    Google Scholar 

  9. Carrat F, Sahler C, Rogez S, et al. Influenza burden-of-illness: Estimates from a national prospective survey of household contacts in France. Arch Intern Med 2002; 162: 1842–1848.

    Google Scholar 

  10. Cox NJ, Subbarao K. Global epidemiology of influenza: Past and present. Annu Rev Med 2000; 51: 407–421.

    Google Scholar 

  11. Thacker SB. The persistence of influenza A in human populations. Epidemiol Rev 1986; 8: 129–142.

    Google Scholar 

  12. Hope-Simpson RE. The role of season in the epidemiology of influenza. J Hyg (Lond) 1981; 86: 35–47.

    Google Scholar 

  13. Glantz MH. Currents of Change: Impacts of El Ninõ and La Ninã on Climate and Society, 2nd edn. Cambridge University Press, 2001.

  14. Ebi KL, Exuzides KA, Lau E, Kelsh M, Barnston A. Association of normal weather periods and El Nino events with hospitalization for viral pneumonia in females: California, 1983–1998. Am J Public Health 2001; 91: 1200–1208.

    Google Scholar 

  15. Colwell RR, Patz JA. Climate, Infectious Disease and Health: An Interdisciplinary Perspective. Washington DC: American Academy of Microbiology, 1998.

    Google Scholar 

  16. Wang HJ, Zhang RH, Cole J, Chavez F. El Nino and the related phenomenon Southern Oscillation (ENSO): The largest signal in interannual climate variation. Proc Natl Acad Sci USA 1999; 96: 11071–11072.

    Google Scholar 

  17. Epstein PR, Calix Pena O, Blanco Racedo J. Climate and disease in Colombia. Lancet 1995; 346: 1243–1244.

    Google Scholar 

  18. Epstein PR. Global warming and vector-borne disease. Lancet 1998; 351: 1737; discussion 1738.

    Google Scholar 

  19. Bouma MJ, Sondorp HE, van der Kaay HJ. Health and climate change. Lancet 1994; 343: 302.

    Google Scholar 

  20. Bouma MJ, Kovats RS, Goubet SA, Cox JS, Haines A. Global assessment of El Nino's disaster burden. Lancet 1997; 350: 1435–1438.

    Google Scholar 

  21. Patz JA, Epstein PR, Burke TA, Balbus JM. Global climate change and emerging infectious diseases. JAMA 1996; 275: 217–223.

    Google Scholar 

  22. Hales S, Weinstein P, Woodward A. Dengue fever epidemics in the South Pacific: Driven by El Nino Southern Oscillation? Lancet 1996; 348: 1664–1665.

    Google Scholar 

  23. Hales S, Weinstein P, Souares Y, Woodward A. El Nino and the dynamics of vectorborne disease transmission. Environ Health Perspect 1999; 107: 99–102.

    Google Scholar 

  24. Linthicum KJ, Anyamba A, Tucker CJ, Kelley PW, Myers MF, Peters CJ. Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 1999; 285: 397–400.

    Google Scholar 

  25. Bouma MJ, van der Kaay HJ. Epidemic malaria in India and the El Nino southern oscillation. Lancet 1994; 344: 1638–1639.

    Google Scholar 

  26. Bouma MJ, Sondorp HE and van der Kaay HJ. Climate change and periodic epidemic malaria. Lancet 1994; 343: 1440.

    Google Scholar 

  27. Bouma MJ, Dye C, van der Kaay HJ. Falciparum ma-laria and climate change in the northwest frontier prov-ince of Pakistan. AmJ Trop Med Hyg 1996; 55: 131–137.

    Google Scholar 

  28. Bouma MJ, Dye C. Cycles of malaria associated with El Ninõ in Venezuela. JAMA 1997; 278: 1772–1774.

    Google Scholar 

  29. Colwell RR. Global climate and infectious disease: The cholera paradigm. Science 1996; 274: 2025–2031.

    Google Scholar 

  30. Lobitz B, Beck L, Huq A, et al. From the cover: climate and infectious disease: Use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci USA 2000; 97: 1438–1443.

    Google Scholar 

  31. Pascual M, Rodo X, Ellner SP, Colwell R, Bouma MJ. Cholera dynamics and El Nino-Southern Oscillation. Science 2000; 289: 1766–1769.

    Google Scholar 

  32. Checkley W, Epstein LD, Gilman RH, et al. Effects of el Ninõ and ambient temperature on hospital admis-sions for diarrhoeal diseases in Peruvian children. Lancet 2000; 355: 442–450.

    Google Scholar 

  33. Hay SI, Myers MF, Burke DS, et al. Etiology of inte-repidemic periods of mosquito-borne disease. Proc Natl Acad Sci USA 2000; 97: 9335–9339.

    Google Scholar 

  34. Garnerin P, Saidi Y, Valleron AJ. The French Com-municable Diseases Computer Network. A seven-year experiment. Ann N Y Acad Sci 1992; 670: 29–42.

    Google Scholar 

  35. Colin C, Geffroy L, Maisonneuve H, et al. Country profile. France. Lancet 1997; 349: 791–797.

    Google Scholar 

  36. Costagliola D, Flahault A, Galinec D, Garnerin P, Menares J, Valleron AJ. A routine tool for detection and assessment of epidemics of influenza-like syn-dromes in France. Am J Pub Health 1991; 81: 97–99.

    Google Scholar 

  37. Kulperger RA, Lockhart J. Tests of Independence in Time Series. J Time Ser Anal 1998; 19: 165.

    Google Scholar 

  38. Efron B, Tibshirani RJ. Introduction to the Bootstrap. Monograph on Statistics and Applied Probability. New York: CRC Press, 1993.

    Google Scholar 

  39. Shortridge KF. Is China an influenza epicentre? Chin Med J (Engl) 1997; 110: 637–641.

    Google Scholar 

  40. Hammond GW, Raddatz RL, Gelskey DE. Impact of atmospheric dispersion and transport of viral aerosols on the epidemiology of influenza. Rev Infect Dis 1989; 11: 494–497.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viboud, C., Pakdaman, K., Boëlle, Py. et al. Association of influenza epidemics with global climate variability. Eur J Epidemiol 19, 1055–1059 (2004). https://doi.org/10.1007/s10654-004-2450-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-004-2450-9

Navigation