Skip to main content
Log in

Effect of conventional and biodegradable microplastics on earthworms during vermicomposting process

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The potential effect of microplastics is an increasingly growing environmental issue. However, very little is known regarding the impact of microplastics on the vermicomposting process. The present study explored the effect of non-biodegradable (low density polyethylene; LDPE) and biodegradable (polybutylene succinate-co-adipate; PBSA) microplastics on earthworm Eisenia fetida during vermicomposting of cow dung. For this, earthworms were exposed to different concentrations (0, 0.5, 1 and 2%) of LDPE and PBSA of 2 mm size. The cow dung supported the growth and hatchlings of earthworms, and the toxicity effect of both LDPE and PBSA microplastics on Eisenia fetida was analyzed. Microplastics decreased the body weight of earthworms and there was no impact on hatchlings. The body weight of earthworm decreased from 0 to 60th day by 18.18% in 0.5% of LDPE treatment, 5.42% in 1% of LDPE, 20.58% in 2% of LDPE, 19.99% in 0.5% of PBSA, 15.09% in 1% of PBSA and 16.36% in 2% of PBSA. The physico-chemical parameters [pH (8.55–8.66), electrical conductivity (0.93–1.02 (S/m), organic matter (77.6–75.8%), total nitrogen (3.95–4.25 mg/kg) and total phosphorus (1.16–1.22 mg/kg)] do not show much significant changes with varying microplastics concentrations. Results of SEM and FTIR-ATR analysis observed the surface damage of earthworms, morphological and biochemical changes at higher concentrations of both LDPE and PBSA. The findings of the present study contribute to a better understanding of microplastics in vermicomposting system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

CD:

Cow dung

FTIR-ATR:

Fourier transformed infrared spectrometry with attenuated total reflectance

LDPE:

Low-density polyethylene

PBS:

Phosphate buffer saline

PBSA:

Polybutylene succinate-co-adipate

SEM:

Scanning electronic microscopy

References

  • Angmo, D., Dutta, R., Singh, J., Chowdhary, A. B., Quadar, J., Thakur, B., Kaur, H., Sharma, M., Singh, S., & Vig, A. P. (2023). Biochemical responses, growth and reproduction of earthworm in low density polyethylene (LDPE). Environmental Quality Management, 33(1), 223–237.

    Article  Google Scholar 

  • Batista, T., Cansado, I. P. D. P., Tita, B., Ilhéu, A., Metrogos, L., Mourão, P. A. M., Nabais, J. M. V., Castanheiro, J. E., Borges, C., & Matos, G. (2022). Dealing with plastic waste from agriculture activity. Agronomy, 12(1), 134.

    Article  CAS  Google Scholar 

  • Bhat, S. A., Singh, J., & Vig, A. P. (2017). Amelioration and degradation of pressmud and bagasse wastes using vermitechnology. Bioresource Technology, 243, 1097–1104.

    Article  CAS  Google Scholar 

  • Bhat, S. A., Singh, S., Singh, J., Kumar, S., Bhawana, & Vig, A. P. (2018). Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture. Bioresource Technology, 252, 172–179.

    Article  CAS  Google Scholar 

  • Bhat, S. A., Cui, G., Yaseera, N., Lei, X., Ameen, F., & Li, F. (2022). Removal potential of microplastics in organic solid wastes via biological treatment approaches. In P. Chowdhary, S. Mani, & P. Chaturvedi (Eds.), Microbial biotechnology: role in ecological sustainability and research. . https://doi.org/10.1002/9781119834489.ch14

  • Bolton, P., & Phillipson, J. (1976). Burrowing, feeding, egestion and energy budgets of Allolobophora rosea (Savigny) (Lumbricidae). Oecologia, 23, 225–245.

    Article  CAS  Google Scholar 

  • Chen, K., Tang, R., Luo, Y., Chen, Y., Ali, E. N., Du, J., Bu, A., Yan, Y., Lu, X., Cai, Y., & Chang, S. X. (2022). Transcriptomic and metabolic responses of earthworms to contaminated soil with polypropylene and polyethylene microplastics at environmentally relevant concentrations. Journal of Hazardous Materials, 427, 128176.

    Article  CAS  Google Scholar 

  • Chen, Y., Liu, X., Leng, Y., & Wang, J. (2020). Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils. Ecotoxicology and Environmental Safety, 187, 109788.

    Article  CAS  Google Scholar 

  • Cui, G., Lü, F., Hu, T., Zhang, H., Shao, L., & He, P. (2022a). Vermicomposting leads to more abundant microplastics in the municipal excess sludge. Chemosphere, 307, 136042.

    Article  CAS  Google Scholar 

  • Cui, W., Gao, P., Zhang, M., Wang, L., Sun, H., & Liu, C. (2022b). Adverse effects of microplastics on earthworms: A critical review. Science of the Total Environment, 850, 158041.

    Article  CAS  Google Scholar 

  • Delangiz, N., Aliyar, S., Pashapoor, N., Nobaharan, K., Lajayer, B. A., & Rodríguez-Couto, S. (2022). Can polymer-degrading microorganisms solve the bottleneck of plastics’ environmental challenges? Chemosphere, 294, 133709.

    Article  CAS  Google Scholar 

  • Dewi, S. K., Han, Z. M., Bhat, S. A., Zhang, F., Wei, Y., & Li, F. (2024). Effect of plastic mulch residue on plant growth performance and soil properties. Environmental Pollution, 343, 123254.

    Article  CAS  Google Scholar 

  • Ding, W., Li, Z., Qi, R., Jones, D. L., Liu, Q., Liu, Q., & Yan, C. (2021). Effect thresholds for the earthworm Eisenia fetida: Toxicity comparison between conventional and biodegradable microplastics. Science of the Total Environment, 781, 146884.

    Article  CAS  Google Scholar 

  • Dris, R., Gasperi, J., Saad, M., Mirande, C., & Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine Pollution Bulletin, 104(1–2), 290–293.

    Article  CAS  Google Scholar 

  • Fernández-Gómez, M. J., Romero, E., & Nogales, R. (2010). Feasibility of vermicomposting for vegetable greenhouse waste recycling. Bioresource Technology, 101(24), 9654–9660.

    Article  Google Scholar 

  • Ferreira-Filipe, D. A., Paço, A., Natal-da-Luz, T., Sousa, J. P., Saraiva, J. A., Duarte, A. C., Rocha-Santos, T., & Silva, A. L. P. (2022). Are mulch biofilms used in agriculture an environmentally friendly solution?—An insight into their biodegradability and ecotoxicity using key organisms in soil ecosystems. Science of the Total Environment, 828, 154269.

    Article  CAS  Google Scholar 

  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.

    Article  Google Scholar 

  • Gudeta, K., Kumar, V., Bhagat, A., Julka, J. M., Bhat, S. A., Ameen, F., Qadri, H., Singh, S., & Amarowicz, R. (2023). Ecological adaptation of earthworms for coping with plant polyphenols, heavy metals, and microplastics in the soil: A review. Heliyon, 9, e14572.

    Article  CAS  Google Scholar 

  • Hanc, A., & Dreslova, M. (2016). Effect of composting and vermicomposting on properties of particle size fractions. Bioresource Technology, 217, 186–189.

    Article  CAS  Google Scholar 

  • Huang, Y., Liu, Q., Jia, W., Yan, C., & Wang, J. (2020). Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 260, 14096.

    Article  Google Scholar 

  • Jiang, X., Chang, Y., Zhang, T., Qiao, Y., Klobučar, G., & Li, M. (2020). Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida). Environmental Pollution, 259, 113896.

    Article  CAS  Google Scholar 

  • Jovanović, B. (2017). Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integrated Environmental Assessment and Management, 13(3), 510–515.

    Article  Google Scholar 

  • Kwak, J. I., & An, Y. J. (2021). Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. Journal of Hazardous Materials, 402, 124034.

    Article  CAS  Google Scholar 

  • Lahive, E., Walton, A., Horton, A. A., Spurgeon, D. J., & Svendsen, C. (2019). Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. Environmental Pollution, 255, 113174.

    Article  CAS  Google Scholar 

  • Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W. J. G. M., Yin, N., Yang, J., Tu, C., & Zhang, Y. (2020a). Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability, 3, 929–937.

    Article  Google Scholar 

  • Li, W., Bhat, S. A., Li, J., Cui, G., Wei, Y., Yamada, T., & Li, F. (2020b). Effect of excess activated sludge on vermicomposting of fruit and vegetable waste by using novel vermireactor. Bioresource Technology, 302, 122816.

    Article  CAS  Google Scholar 

  • Liu, J., Qin, J., Zhu, L., Zhu, K., Liu, Z., Jia, H., & Lichtfouse, E. (2022). The protective layer formed by soil particles on plastics decreases the toxicity of polystyrene microplastics to earthworms (Eisenia fetida). Environment International, 162, 107158.

    Article  CAS  Google Scholar 

  • Malińska, K., Zabochnicka-Świątek, M., Cáceres, R., & Marfà, O. (2016). The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting. Ecological Engineering, 90, 35–41.

    Article  Google Scholar 

  • Mondal, T., Jho, E.H., Hwang, S.K., Hyeon, Y. & Park, C. (2023). Responses of earthworms exposed to low-density polyethylene microplastic fragments. Chemosphere, 333, 138945.

  • Naderi Beni, N., Karimifard, S., Gilley, J., Messer, T., Schmidt, A., & Bartelt-Hunt, S. (2023). Higher concentrations of microplastics in runoff from biosolid-amended croplands than manure-amended croplands. Communications Earth & Environment, 4, 42.

    Article  Google Scholar 

  • OECD (Organization for Economic Co-operation and Development). (2004). Earthworm reproduction test (Eisenia fetida/Eisenia andrei) (No. 222). In OECD Guidelines for the testing of chemicals. OECD Publishing.

  • Ragoobur, D., Huerta-Lwanga, E., & Somaroo, G. D. (2022). Reduction of microplastics in sewage sludge by vermicomposting. Chemical Engineering Journal, 450, 138231.

    Article  CAS  Google Scholar 

  • Ramos, R. F., Santana, N. A., de Andrade, N., Romagna, I. S., Tirloni, B., de Oliveira Silveira, A., Domínguez, J., & Jacques, R. J. S. (2022). Vermicomposting of cow manure: Effect of time on earthworm biomass and chemical, physical, and biological properties of vermicompost. Bioresource Technology, 345, 126572.

    Article  Google Scholar 

  • Rodriguez-Seijo, A., Lourenço, J., Rocha-Santos, T. A. P., Da Costa, J., Duarte, A. C., Vala, H., & Pereira, R. (2017). Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 220, 495–503.

    Article  CAS  Google Scholar 

  • Shao, H., Wei, Y., Wei, C., Zhang, F., & Li, F. (2021). Insight into cesium immobilization in contaminated soil amended with biochar, incinerated sewage sludge ash and zeolite. Environmental Technology & Innovation, 23, 101587.

    Article  CAS  Google Scholar 

  • Sharma, D., Pandey, A. K., Yadav, K. D., & Kumar, S. (2021). Response surface methodology and artificial neural network modelling for enhancing maturity parameters during vermicomposting of floral waste. Bioresource Technology, 324, 124672.

    Article  CAS  Google Scholar 

  • Sharma, D., Prasad, R., Patel, B., & Parashar, C. K. (2022). Biotransformation of sludges from dairy and sugarcane industries through vermicomposting using the epigeic earthworm Eisenia fetida. International Journal of Recycling Organic Waste in Agriculture, 11(2), 165–175.

    Google Scholar 

  • Sobhani, Z., Panneerselvan, L., Fang, C., Naidu, R., & Megharaj, M. (2022). Chronic and transgenerational effects of polyethylene microplastics at environmentally relevant concentrations in earthworms. Environmental Technology & Innovation, 25, 102226.

    Article  CAS  Google Scholar 

  • Turner, A. (2022). PBDEs in the marine environment: Sources, pathways and the role of microplastics. Environmental Pollution, 301, 18943.

    Article  Google Scholar 

  • Wang, J., Chen, G., Christie, P., Zhang, M., Luo, Y., & Teng, Y. (2015). Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses. Science of the Total Environment, 523, 129–137.

    Article  CAS  Google Scholar 

  • Wang, J., Coffin, S., Sun, C., Schlenk, D., & Gan, J. (2019). Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environmental Pollution, 249, 776–784.

    Article  CAS  Google Scholar 

  • Wang, Q., Adams, C. A., Wang, F., Sun, Y., & Zhang, S. (2022). Interactions between microplastics and soil fauna: A critical review. Critical Reviews in Environmental Science and Technology, 52(18), 3211–3243.

    Article  Google Scholar 

  • Xiang, Y., Jiang, L., Zhou, Y., Luo, Z., Zhi, D., Yang, J., & Lam, S. S. (2022). Microplastics and environmental pollutants: Key interaction and toxicology in aquatic and soil environments. Journal of Hazardous Materials, 422, 126843.

    Article  CAS  Google Scholar 

  • Xu, G., Liu, Y., Song, X., Li, M., & Yu, Y. (2021). Size effects of microplastics on accumulation and elimination of phenanthrene in earthworms. Journal of Hazardous Materials, 403, 123966.

    Article  CAS  Google Scholar 

  • Zhang, G. S., Zhang, F. X., & Li, X. T. (2019). Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Science of the Total Environment, 670, 1–7.

    Article  CAS  Google Scholar 

  • Zhang, S., Li, Y., Chen, X., Jiang, X., Li, J., Yang, L., Yin, X., & Zhang, X. (2022). Occurrence and distribution of microplastics in organic fertilizers in China. Science of the Total Environment, 844, 157061.

    Article  CAS  Google Scholar 

  • Zhong, H., Yang, S., Zhu, L., Liu, C., Zhang, Y., & Zhang, Y. (2021). Effect of microplastics in sludge impacts on the vermicomposting. Bioresource Technology, 326, 124777.

    Article  CAS  Google Scholar 

  • Zhou, J., Gui, H., Banfield, C. C., Wen, Y., Zang, H., Dippold, M. A., Charlton, A., & Jones, D. L. (2021). The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biology & Biochemistry, 156, 108211.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sartaj Ahmad Bhat acknowledges the Japan Society for the Promotion of Science (JSPS) for the JSPS International Postdoctoral Fellowship.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Sartaj Ahmad Bhat: Conceptualization, Investigation, Methodology, Writing—Original draft preparation. Zaw Min Han: Visualization, Writing—Reviewing and Editing. Shiamita Kusuma Dewi: Software, Writing—Reviewing and Editing. Yongfen Wei: Supervision, Writing—Reviewing and Editing. Fusheng Li: Validation, Supervision, Writing—Reviewing and Editing.

Corresponding authors

Correspondence to Sartaj Ahmad Bhat or Yongfen Wei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Declaration of generative AI and AI assisted technologies in the writing process

During the preparation of this work the author(s) did not use any AI tools/services in reviewing and editing the submitted manuscript and take(s) full responsibility for the content of the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, S.A., Han, Z.M., Dewi, S.K. et al. Effect of conventional and biodegradable microplastics on earthworms during vermicomposting process. Environ Geochem Health 46, 189 (2024). https://doi.org/10.1007/s10653-024-01974-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01974-9

Keywords

Navigation