Skip to main content
Log in

Bioaccumulation and health risk assessment of trace elements in Tilapia (Oreochromis mossambicus) from selected inland water bodies

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The presence of toxic trace elements (TEs) has resulted in a worldwide deterioration in freshwater ecosystem quality. This study aimed to analyze the distribution of TEs, including chromium (Cr), nickel (Ni), arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb), in water, sediment, and organs of Tilapia (Oreochromis mossambicus) collected from selected inland water bodies in Tamil Nadu, India. The water samples exhibited a range of concentrations for TEs: Cr varied from 0.014 to 5.193 µg/L, Ni ranged from 0.283 to 11.133 µg/L, As ranged from 0.503 to 1.519 µg/L, Cd from 0.001 to 0.616 µg/L, and Pb ranged from non-detectable (ND) to 6.103 µg/L. The concentrations of TEs in sediment were found to vary within the following ranges: 5.259 to 32.621 mg/kg for Cr, 1.932 to 30.487 mg/kg for Ni, 0.129 to 0.563 mg/kg for As, 0.003 to 0.011 mg/kg for Cd, ND to 0.003 mg/kg for Hg, and 0.404 to 1.575 mg/kg for Pb. The study found that the accumulation pattern of TE in fishes across all selected areas was liver > bone > gill > muscle. The organs had TE concentrations of Cr (ND-0.769 mg/kg), Ni (ND-1.053 mg/kg), As (0.002–0.080 mg/kg), Pb (ND-0.411 mg/kg), and Hg (ND-0.067 mg/kg), which was below the maximum residual limit prescribed by EC and FSSAI. The bioconcentration factor (BCF) of TEs exhibited a greater magnitude in comparison with the biota–sediment accumulation factor due to the higher concentration of TEs in fish and lower level in water. The assessment of both carcinogenic and non-carcinogenic risks suggests that the consumption of Tilapia from the study region does not pose any significant risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during the current study are found in the article.

References

  • Abdel-Baki, A. S., Dkhil, M. A., & Al-Quraishy, S. (2011). Bioaccumulation of some heavy metals in tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah, Saudi Arabia. African Journal of Biotechnology, 10(13), 2541–2547.

    CAS  Google Scholar 

  • Abd-Elghany, S. M., Zaher, H. A., Elgazzar, M. M., & Sallam, K. I. (2020). Effect of boiling and grilling on some heavy metal residues in crabs and shrimps from the Mediterranean Coast at Damietta region with their probabilistic health risk assessment. Journal of Food Composition and Analysis, 93, 103606.

    Article  CAS  Google Scholar 

  • Adams, D. H., Sonne, C., Basu, Ni., Dietz, R., Nam, D.-H., Leifsson, P. S., & Jensen, A. L. (2010). Mercury contamination in spotted seatrout, Cynoscion nebulosus: an assessment of liver, kidney, blood, and nervous system health. Science of the Total Environment, 408(23), 5808–5816. https://doi.org/10.1016/j.scitotenv.2010.08.019

    Article  CAS  Google Scholar 

  • Ali, H., & Khan, E. (2018). Assessment of potentially toxic heavy metals and health risk in water, sediments, and different fish species of River Kabul, Pakistan. Human and Ecological Risk Assessment: An International Journal, 24(8), 2101–2118.

    Article  CAS  Google Scholar 

  • Ambedkar, G., Kmalakkannan, J., & Muniyan, M. (2017). Assessment of some heavy metals in the selected freshwater fish species collected from Veeranam Lake Cuddalore District, Tamil Nadu, India. World Scientific News, 81(2), 235–245.

    CAS  Google Scholar 

  • Ambedkar, G., & Muniyan, M. (2011). Bioaccumulation of some heavy metals in the selected five freshwater fish from Kollidam River, Tamilnadu, India. Advances in Applied Science Research, 2(5), 221–225.

    CAS  Google Scholar 

  • AOAC, 2015. Determination of TEs in food by inductively coupled plasma–mass spectrometry: first action 2015.01. J. AOAC Int. 98 (4), 1113–1120.

  • Arisekar, U., Shakila, R. J., Shalini, R., & Jeyasekaran, G. (2020). Human health risk assessment of heavy metals in aquatic sediments and freshwater fish caught from Thamirabarani River, the Western Ghats of South Tamil Nadu. Marine Pollution Bulletin, 159, 111496.

    Article  CAS  Google Scholar 

  • Arisekar, U., Shakila, R. J., Shalini, R., Jeyasekaran, G., Arumugam, N., Almansour, A. I., Keerthana, M., & Perumal, K. (2022a). Bioaccumulation of organochlorine pesticide residues (OCPs) at different growth stages of pacific white leg shrimp (Penaeus vannamei): First report on ecotoxicological and human health risk assessment. Chemosphere, 308, 136459.

    Article  CAS  Google Scholar 

  • Arisekar, U., Shakila, R. J., Shalini, R., Jeyasekaran, G., Keerthana, M., Arumugam, N., Almansour, A. I., & Perumal, K. (2022b). Distribution and ecological risk assessment of heavy metals using geochemical normalization factors in the aquatic sediments. Chemosphere, 294, 133708.

    Article  CAS  Google Scholar 

  • Arisekar, U., Shakila, R. J., Shalini, R., Jeyasekaran, G., Padmavathy, P., Hari, M. S., & Sudhan, C. (2022c). Accumulation potential of heavy metals at different growth stages of Pacific white leg shrimp, Penaeus vannamei farmed along the Southeast coast of Peninsular India: A report on ecotoxicology and human health risk assessment. Environmental Research, 212, 113105.

    Article  CAS  Google Scholar 

  • Arisekar, U., Shakila, R. J., Shalini, R., Jeyasekaran, G., Sivaraman, B., & Surya, T. (2021a). Heavy metal concentrations in the macroalgae, seagrasses, mangroves, and crabs collected from the Tuticorin coast (Hare Island), Gulf of Mannar, South India. Marine Pollution Bulletin, 163, 111971.

    Article  CAS  Google Scholar 

  • Arisekar, U., Shakila, R. J., Shalini, R., Sivaraman, B., Jeyasekaran, G., & Malini, N. A. H. (2021b). Heavy metal concentration in reef-associated surface sediments, Hare Island, Gulf of Mannar Marine Biosphere Reserve (southeast coast of India): The first report on pollution load and biological hazard assessment using geochemical normalization factors and hazard indices. Marine Pollution Bulletin, 162, 111838.

    Article  CAS  Google Scholar 

  • Arisekar, U., Shalini, R., Sundhar, S., Sangma, S. R., Rathinam, R. B., Albeshr, M. F., Alrefaei, A. F., Naidu, B. C., Kanagaraja, A., & Sahana, M. D. (2023). De-novo exposure assessment of heavy metals in commercially important fresh and dried seafood: Safe for human consumption. Environmental Research, 235, 116672.

    Article  CAS  Google Scholar 

  • ATSDR. (1999). Toxicological profile for mercury (update). Atlanta, GA: US Agency for Toxic Substances and Disease Registry.

  • Banerjee, S., Maiti, S. K., & Kumar, A. (2015). Metal contamination in water and bioaccumulation of metals in the planktons, molluscs and fishes in Jamshedpur stretch of Subarnarekha R iver of C hotanagpur plateau, India. Water and Environment Journal, 29(2), 207–213.

    Article  CAS  Google Scholar 

  • Bashir, F. A., Shuhaimi-Othman, M., & Mazlan, A. G. (2012). Evaluation of trace metal levels in tissues of two commercial fish species in Kapar and Mersing coastal waters, Peninsular Malaysia. Journal of Environmental and Public Health, 2012, 1–10. https://doi.org/10.1155/2012/352309

    Article  CAS  Google Scholar 

  • Basu, S., Chanda, A., Gogoi, P., & Bhattacharyya, S. (2021). Organochlorine pesticides and heavy metals in the zooplankton, fishes, and shrimps of tropical shallow tidal creeks and the associated human health risk. Marine Pollution Bulletin, 165, 112170.

    Article  CAS  Google Scholar 

  • Bhuvaneshwari, R., Mamtha, N., Selvam, P., & Rajendran, R. B. (2012). Bioaccumulation of metals in muscle, liver and gills of six commercial fish species at Anaikarai dam of River Kaveri, South India. International Journal of Applied Biology and Pharmaceutical Technology, 3, 08–14.

    CAS  Google Scholar 

  • CCME. (2014). Sediment quality guidelines for the protection of aquatic life. Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment, Canada.

  • Chahid, A. (2016). Quantification of metallic TEs (cadmium, lead, and total mercury) of certain fishery products landed in the Essaouira-Dakhla zone: Health risk assessment. IBN ZOHR University, Faculty of Sciences (Morocco).

  • Chien, L. C., Hung, T. C., Choang, K. Y., Yeh, C. Y., Meng, P. J., Shieh, M. J., & Han, B. C. (2002). Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Science of the Total Environment, 285(1–3), 177–185.

    Article  CAS  Google Scholar 

  • Copat, C., Arena, G., Fiore, M., Ledda, C., Fallico, R., Sciacca, S., & Ferrante, M. (2013). Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: Consumption advisories. Food and Chemical Toxicology, 53, 33–37.

    Article  CAS  Google Scholar 

  • Coulibaly, S., Atse, B. C., Koffi, K. M., Sylla, S., Konan, K. J., & Kouassi, N. G. J. (2012). Seasonal accumulations of some heavy metal in water, sediment and tissues of black-chinned Tilapia Sarotherodon melanotheron from Biétri Bay in Ebrié Lagoon, Ivory Coast. Bulletin of Environmental Contamination and Toxicology, 88, 571–576.

    Article  CAS  Google Scholar 

  • Cui, L., Ge, J., Zhu, Y., Yang, Y., & Wang, J. (2015). Concentrations, bioaccumulation, and human health risk assessment of organochlorine pesticides and heavy metals in edible fish from Wuhan, China. Environmental Science and Pollution Research, 22, 15866–15879.

    Article  CAS  Google Scholar 

  • DEA. (2010). Framework for the Management of Contaminated Land. Republic of South Africa, Department of Environmental Affairs. http://sawic.environment.gov.za/documents/562.pdf

  • Dhanakumar, S., Solaraj, G., & Mohanraj, R. (2015). Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotoxicology and Environmental Safety, 113, 145–151.

    Article  CAS  Google Scholar 

  • EC. (2006). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union49(L 364), 5–24.

  • EC. (2017). European Commission Regulation, EC No. SANTE/11813/2017 (21-22 November 2017, rev.0) for Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. Directorate-general for health and food safety, pp. 1–42.

  • EPR. (1986). The Environmental Protection Rule. Available at http://cpcb.nic.in/GeneralStan dards.pdf (accessed November 5, 2017)

  • Ezemonye, L. I., Adebayo, P. O., Enuneku, A. A., Tongo, I., & Ogbomida, E. (2019). Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria. Toxicology Reports, 6, 1–9.

    Article  CAS  Google Scholar 

  • FAO. (2022). The state of world fisheries and aquaculture 2022. Towards blue transformation. The State of World Fisheries and Aquaculture (SOFIA).

  • FSSAI. (2011). Food Safety and Standards Authority of India. Ministry of Health and Family Welfare, Govt. of India, New Delhi ttps://www.fssai.gov.in/dam/jcr: 755c6420A74b-44f4–9301–4ddd289b23fc/contaminant regulation

  • Gao, H., Bai, J., Xiao, R., Liu, P., Jiang, W., & Wang, J. (2013). Levels, sources and risk assessment of TEs in wetland soils of a typical shallow freshwater lake, China. Stochastic Environmental Research and Risk Assessment, 27, 275–284.

    Article  Google Scholar 

  • Gupta, A., Rai, D. K., Pandey, R. S., & Sharma, B. (2009). Analysis of some heavy metals in the riverine water, sediments and fish from river Ganges at Allahabad. Environmental Monitoring and Assessment, 157, 449–458.

    Article  CAS  Google Scholar 

  • Haripriyan, U., Arun, J., Gopinath, K. P., Mythili, R., Kim, W., & Govarthanan, M. (2023). A mini-review on innovative strategies for simultaneous microbial bioremediation of toxic heavy metals and dyes from wastewater. Archives of Microbiology, 205(1), 29.

    Article  CAS  Google Scholar 

  • He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). TEs in agroecosystems and impacts on the environment. Journal of TEs in Medicine and Biology, 19(2–3), 125–140.

    CAS  Google Scholar 

  • IARC (2014). World Cancer Report. International Agency for Research on Cancer, Lyon, France.

  • Jayaprakash, K., Govarthanan, M., Mythili, R., Selvankumar, T., & Chang, Y.-C. (2019). Bioaugmentation and biostimulation remediation technologies for heavy metal lead contaminant. In Y.-C. Chang & Y.-C. Chang (Eds.), Microbial Biodegradation of Xenobiotic Compounds (pp. 24–36). CRC Press. https://doi.org/10.1201/b22151-2

    Chapter  Google Scholar 

  • Kalogeropoulos, N., Karavoltsos, S., Sakellari, A., Avramidou, S., Dassenakis, M., & Scoullos, M. (2012). Heavy metals in raw, fried and grilled Mediterranean finfish and shellfish. Food and Chemical Toxicology, 50(10), 3702–3708.

    Article  CAS  Google Scholar 

  • Kennish, M. J. (1992). Ecology of Estuaries (p. 1). Anthropogenic effects. CRC. Press. Inc.

    Google Scholar 

  • Khan, S., Naushad, M., Govarthanan, M., Iqbal, J., & Alfadul, S. M. (2022). Emerging contaminants of high concern for the environment: Current trends and future research. Environmental Research, 207, 112609.

    Article  CAS  Google Scholar 

  • Krishnan, R. Y., Manikandan, S., Subbaiya, R., Biruntha, M., Govarthanan, M., & Karmegam, N. (2021). Removal of emerging micropollutants originating from pharmaceuticals and personal care products (PPCPs) in water and wastewater by advanced oxidation processes: A review. Environmental Technology & Innovation, 23, 101757.

    Article  CAS  Google Scholar 

  • Kumar, B., Senthil Kumar, K., Priya, M., Mukhopadhyay, D., & Shah, R. (2010). Distribution, partitioning, bioaccumulation of TEs in water, sediment and fish from sewage fed fish ponds in eastern Kolkata, India. Toxicological & Environ Chemistry, 92(2), 243–260.

    Article  CAS  Google Scholar 

  • Kumari, P., Chowdhury, A., & Maiti, S. K. (2018). Assessment of heavy metal in the water, sediment, and two edible fish species of Jamshedpur Urban Agglomeration, India with special emphasis on human health risk. Human and Ecological Risk Assessment: An International Journal, 24(6), 1477–1500.

    Article  CAS  Google Scholar 

  • Kuppu, R., Manoharan, S., & Uthandakalaipandian, R. (2018). A study on the impact of water quality on the murrel fish Channa striata and Channa punctata from three major Southern Tamilnadu rivers, India. RSC Advances, 8(21), 11375–11387.

    Article  CAS  Google Scholar 

  • Liu, H., Yang, J., & Gan, J. (2010). TE accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China. Archives of Environmental Contamination and Toxicology, 59, 593–601.

    Article  CAS  Google Scholar 

  • Lu, A., Wang, J., Qin, X., Wang, K., Han, P., & Zhang, S. (2012). Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the Total Environment, 425, 66–74.

    Article  CAS  Google Scholar 

  • Mannio, J., JaĘrvinen, O., Tuominen, R., & Verta, M. (1995). Survey of TEs in lake waters of Finnish Lapland using the ICP-MS technique. Science of the Total Environment, 160, 433–439.

    Article  Google Scholar 

  • Mohammed, F. K., Deonarine, D. L., & Seepersaud, M. (2018). An assessment of contamination and ecological risk of metals in sediments of the Guaracara, Caparo and Couva rivers in Trinidad, West Indies. Chemistry and Ecology, 34(3), 241–258.

    Article  CAS  Google Scholar 

  • MPEDA. (2021). The Marine Product Export Development Authority, Ministry of Commerce and Industry. Govt. of India, Cochin. https://mpeda.gov.in.

  • Oztürk, M., Özözen, G., Minareci, O., & Minareci, E. (2008). Determination of heavy metals in of fishes, water and sediment from the Demirköprü Dam Lake (Turkey). Journal of Applied Biological Sciences, 2(3), 99–104.

    Google Scholar 

  • Oztürk, M., Özözen, G., Minareci, O., & Minareci, E. (2009). Determination of heavy metals in fish, water and sediments of Avsar Dam Lake in Turkey. Journal of Environmental Health Science & Engineering, 6(2), 73–80.

    Google Scholar 

  • Pandiyan, J., Poiyamozhi, A., Mahboob, S., Al-Ghanim, K. A., Al-Misned, F., Ahmed, Z., Manzoor, I., & Govindarajan, M. (2022). Assessment of the toxic effects of heavy metals on waterbirds and their prey species in freshwater habitats. Toxics, 10(11), 641.

    Article  CAS  Google Scholar 

  • Rajeev, M., & Bhandarkar, S. (2022). Fisheries Sector in India—An overview. Unravelling Supply Chain Networks of Fisheries in India: the Transformation of Retail, 19, 47–59.

    Article  Google Scholar 

  • Reddy, C. P. K., Manikandavelu, D., Arisekar, U., Ahilan, B., Uma, A., Jayakumar, N., Kim, W., Govarthanan, M., Harini, C., Vidya, R. S., & Madhavan, N. (2023a). Toxicological effect of endocrine disrupting insecticide (deltamethrin) on enzymatical, haematological and histopathological changes in the freshwater iridescent shark, Pangasius Hypothalamus. Environmental Toxicology and Pharmacology, 101, 104201.

    Article  Google Scholar 

  • Reddy, C. P. K., Manikandavelu, D., Arisekar, U., Albeshr, M. F., Alrefaei, A. F., Sudhakar, O., Keerthana, M., & Packialakshmi, J. S. (2023b). Toxicological effect of endocrine disrupting heavy metal (Pb) on Mekong silurid Pangasius catfish. Pangasius Hypophthalmus. Environmental Research, 231, 116033.

    Article  Google Scholar 

  • Saha, N., Mollah, M. Z. I., Alam, M. F., & Rahman, M. S. (2016). Seasonal investigation of heavy metals in marine fishes captured from the Bay of Bengal and the implications for human health risk assessment. Food Control, 70, 110–118.

    Article  CAS  Google Scholar 

  • Sanou, A., Coulibaly, S., Coulibaly, M., N’Goran N’dri, S., & Célestin Atse, B. (2021). Assessment of heavy metal contamination of fish from a fish farm by bioconcentration and bioaccumulation factors. Egyptian Journal of Aquatic Biology and Fisheries, 25(1), 821–841.

    Article  Google Scholar 

  • Shahjahan, M., Taslima, K., Rahman, M. S., Al-Emran, M., Alam, S. I., & Faggio, C. (2022). Effects of heavy metals on fish physiology–a review. Chemosphere, 300, 134519.

    Article  CAS  Google Scholar 

  • Shalini, R., Jeyasekaran, G., Shakila, R. J., Sundhar, S., Arisekar, U., Jawahar, P., & Surya, T. (2021a). Dietary intake of TEs from commercially important fish and shellfish of Thoothukudi along the southeast coast of India and implications for human health risk assessment. Marine Pollution Bulletin, 173, 113020.

    Article  CAS  Google Scholar 

  • Shalini, R., Jeyasekaran, G., Shakila, R. J., & Arisekar, U. (2021b). Trace element concentrations in the organs of fish along the southeast coast of India. Marine Pollution Bulletin, 162, 111817.

    Article  CAS  Google Scholar 

  • Shalini, R., Jeyasekaran, G., Shakila, R. J., Arisekar, U., Sundhar, S., Jawahar, P., & HemaMalini, A. (2020). Concentrations of TEs in the organs of commercially exploited crustaceans and cephalopods caught in the waters of Thoothukudi, South India. Marine Pollution Bulletin, 154, 111045.

    Article  CAS  Google Scholar 

  • Storelli, M. M. (2008). Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: Estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food and Chemical Toxicology, 46(8), 2782–2788.

    Article  CAS  Google Scholar 

  • Sundhar, S., Shakila, R. J., Jeyasekaran, G., Aanand, S., Shalini, R., Arisekar, U., Surya, T., Malini, N. A. H., & Boda, S. (2020). Risk assessment of organochlorine pesticides in seaweeds along the Gulf of Mannar, Southeast India. Marine Pollution Bulletin, 161, 111709.

    Article  CAS  Google Scholar 

  • Sundhar, S., Shakila, R. J., Shalini, R., Aanand, S., Jayakumar, N., Arisekar, U., & Surya, T. (2023). First report on the exposure and health risk assessment of organochlorine pesticide residues in Caulerpa racemosa, and their potential impact on household culinary processes. Food Research International, 174, 113559.

    Article  CAS  Google Scholar 

  • Taşbozan, O., & Gökçe, M. A. (2017). Fatty acids in fish. Fatty Acids, 1, 143–159.

    Google Scholar 

  • Ulaganathan, A., Robinson, J. S., Rajendran, S., Geevaretnam, J., Shanmugam, S., Natarajan, A., Abdulrahman, A., & Karthikeyan, P. (2022a). Potentially toxic elements contamination and its removal by aquatic weeds in the riverine system: A comparative approach. Environmental Research, 206, 112613.

    Article  CAS  Google Scholar 

  • Ullah, H., Noreen, S., Rehman, A., Waseem, A., Zubair, S., Adnan, M., & Ahmad, I. (2017). Comparative study of heavy metals content in cosmetic products of different countries marketed in Khyber Pakhtunkhwa, Pakistan. Arabian Journal of Chemistry, 10(1), 10–18.

    Article  CAS  Google Scholar 

  • Ullah, Z., Khan, H., Waseem, A., Mahmood, Q., & Farooq, U. (2013). Water quality assessment of the River Kabul at Peshawar, Pakistan: Industrial and urban wastewater impacts. Journal of Water Chemistry and Technology, 35, 170–176.

    Article  Google Scholar 

  • USEPA. (1989). Risk Assessment Guidelines Superfund (RAGS). In: Human Health Evaluation Manual (Part A) OWSER Directive 9285. 7-01A, vol. 1. EPA-540/1-89-002.

  • USEPA. (2002a). Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Environmental Protection Agency, 821-R-02–013. 4th edn, USEPA, Washington, DC.

  • USEPA (2002b). Integrated Risk Information System (IRIS) Database. United States Environmental Protection Agency).

  • USEPA. (2011). Exposure Factors Handbook: 2011 Edition. Office of Research and Development, 2011. 504. US Environmental Protection Agency, Washington. DC.

  • USEPA. (2012). USEPA-Integrated Risk Information system-RfD, RfC, Oral Slope Factor, or Inhalation Unit Risk Exposure Factor. US Environmental Protection Agency, Washington, DC. https://cfpub.epa.gov/ncea/iris/search/index.cfm

  • Vinodhini, R., & Narayanan, M. (2008). Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp). International Journal of Environmental Science & Technology, 5, 179–182.

    Article  CAS  Google Scholar 

  • Wang, X., Qu, R., Huang, Q., Wei, Z., & Wang, Z. (2015). Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels. Aquatic Toxicology, 160, 142–150.

  • WHO. (2006). Guidelines for drinking-water quality. First addendum to the third edition, 3rd ed. (p. 1–67).

  • WHO. (2011). Guidelines for drinking-water quality, 4th ed. (p.1–471). Geneva: World Health Organization.

  • Xiao, R., Bai, J., Huang, L., Zhang, H., Cui, B., & Liu, X. (2013). Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China. Ecotoxicology, 22, 1564–1575.

    Article  CAS  Google Scholar 

  • Zhang, C., Wu, L., Luo, Y., Zhang, H., & Christie, P. (2008). Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physicochemical properties. Environmental Pollution, 151(3), 470–476.

    Article  CAS  Google Scholar 

  • Zhang, C., Yu, Z. G., Zeng, G. M., Jiang, M., Yang, Z. Z., Cui, F., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270–281.

    Article  CAS  Google Scholar 

  • Zhao, L., Yang, F., Yan, X., Huo, Z., & Zhang, G. (2012). Heavy metal concentrations in surface sediments and manila clams (Ruditapes philippinarum) from the Dalian coast, China after the Dalian Port oil spill. Biological TE Research, 149, 241–247.

    CAS  Google Scholar 

  • Ziyaadini, M., Yousefiyanpour, Z., Ghasemzadeh, J., & Zahedi, M. M. (2017). Biota-sediment accumulation factor and concentration of heavy metals (Hg, Cd, As, Ni, Pb and Cu) in sediments and tissues of Chiton lamyi (Mollusca: Polyplacophora: Chitonidae) in Chabahar Bay, Iran. Iranian Journal of Fisheries Sciences, 16(4), 1123–1134.

    Google Scholar 

Download references

Acknowledgments

The authors thank the Tamil Nadu Dr. J. Jayalalithaa Fisheries University for providing the necessary facilities to carry out the work at the Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Thoothukudi. The authors express their sincere appreciation to the Researchers Supporting Project Number (RSP2024R68) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

VB, RS, and UA helped in conceptualization; RJS, PP, and BS helped in methodology; SD and SS worked in software; MSA, RM, WK, and SS helped in formal analysis; UA, BS, and SS worked in investigation; RS and UA helped in writing—original draft preparation; UA and RS helped in writing—review and editing; RS and RJS helped in supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Rajendran Shalini or Ulaganathan Arisekar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

All authors have consented to participate.

Consent to publish

All authors have consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 399 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balamanikandan, V., Shalini, R., Arisekar, U. et al. Bioaccumulation and health risk assessment of trace elements in Tilapia (Oreochromis mossambicus) from selected inland water bodies. Environ Geochem Health 46, 187 (2024). https://doi.org/10.1007/s10653-024-01909-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01909-4

Keywords

Navigation