Skip to main content

Advertisement

Log in

An experiment on the glucose metabolite, serum electrolytes, and somatic characteristics of the Levantine Barbel Luciobarbus pectoralis (Heckel, 1843) under the effect of heavy metals

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Levantine Barbel (Luciobarbus pectoralis) is a benthopelagic, subtropical native fish living in the inland waters of the Mediterranean region in Türkiye and Syria. Even though it is widely consumed locally, experimental observations on how heavy metals [zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb)] and their mixtures affect the fish are lacking. Several bioindicators of the fish exposed to heavy metals are the focus of the current investigation. Initially, Fulton condition factor (K) and hepato-somatic index (HSI) were utilized in the somatic characteristics of L. pectoralis. Then, changes in the level of glucose metabolite and electrolytes [sodium (Na+), potassium (K+), and chloride (Cl)] of blood were determined by Architect C-800 auto-analyzer after exposure durations. The results of the experiments demonstrated that heavy metals can rapidly have a negative impact on the regulation of blood and somatic characteristics of fish. It was observed that the K index decreased in all metal groups at 24 and 96 h, while considerably increased in the 24-h effect of cadmium only (P ≤ 0.05). Along with that, in the 96-h effect of metals, Cu indicated the highest decrease in the HSI value (19.33%, P ≤ 0.05). In general, all heavy metal exposures caused the fish's glucose metabolite level to rise compared to the control (P ≤ 0.05). Furthermore, sublethal effects of metals at both durations caused considerable changes in blood electrolytes of the fish compared to control (P ≤ 0.05). Additionally, putative biomarkers in both durations had the greatest difference in toxic similarity under the Cu impact compared to the control, according to Hierarchical clustering and Euclidean distance metrics. Although the applied concentrations of Zn, Cu, Cd, and Pb and their mixture studied were generally within the limits of the various organizations and the surface water regulations, changes in ecophysiological and somatic indices were nonetheless seen in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abedi, Z., Khalesi, M. K., Kohestan, E. S., & Rahmani, H. (2012). Comparison of lethal concentrations (LC50-96 h) of CdCl2, CrCl3, and (Pb(NO3)2 in common carp (Cyprinus carpio) and sutchi catfish (Pangasius hypophthalmus). Iranian Journal of Toxicology, 6(18), 672–680.

    Google Scholar 

  • Abou-Zaid, F. A., El-Serafy, S., & Shourbagy, I. K. (1988). The toxicity of copper and zinc to three fish species of genus Tilapia. Egyptian Journal of Applied Science, 3, 8–16.

    Google Scholar 

  • Adel, M., Dadar, M., Khajavi, S. H., Pourgholam, R., Karimí, B., & Velisek, J. (2017). Hematological, biochemical and histopathological changes in Caspian brown trout (Salmo trutta caspius Kessler, 1877) following exposure to sublethal concentrations of chlorpyrifos. Toxin Reviews, 36(1), 73–79. https://doi.org/10.1080/15569543.2016.1230631

    Article  CAS  Google Scholar 

  • Afshan, S., Ali, S., Ameen, U. S., Farid, M., Bharwana, S. A., Hannan, F., & Ahmad, R. (2014). Effect of different heavy metal pollution on fish. Research Journal of Chemistry and Environment, 2(1), 74–79.

    CAS  Google Scholar 

  • Almeida, J. A., Novelli, E. L. B., Dal-Pai Silva, M., & Alves-Junior, R. (2001). Environmental cadmium exposure and metabolic responses of the Nile tilapia Oreochromis niloticus. Environmental Pollution, 114, 169–175. https://doi.org/10.1016/S0269-7491(00)00221-9

    Article  CAS  Google Scholar 

  • Álvarez-González, C. A., Martínez-Sánchez, L., Peña-Marín, E. S., Guerrero-Zárate, R., Jesús-Ramírez, F., Morales-García, V., Uribe-López, M., & Núñez-Nogueira, G. (2020). Effects on the growth and digestive enzyme activity in Nile tilapia fry (Oreochromis niloticus) by Lead Exposure. Water, Air, and Soil Pollution, 231, 1–15. https://doi.org/10.1007/s11270-020-04810-9

    Article  CAS  Google Scholar 

  • Babaei, F., Ramalingam, R., Tavendale, A., Liang, Y., Yan, L. S. K., Ajuh, P., Cheng, S. H., & Lam, Y. W. (2013). Novel blood collection method allows plasma proteome analysis from single zebrafish. Journal of Proteome Research, 12(4), 1580–1590. https://doi.org/10.1021/pr3009226

    Article  CAS  Google Scholar 

  • Bayçelebi, E. (2020). Distribution and diversity of fish from Seyhan, Ceyhan and Orontes river systems. Zoosystematics and Evolution, 96, 747–767. https://doi.org/10.3897/zse.96.55837

    Article  Google Scholar 

  • Bere, T., & Tundisi, J. G. (2012). Cadmium and lead toxicity on tropical freshwater periphyton communities under laboratory-based mesocosm experiments. Hydrobiologia, 680, 187–197. https://doi.org/10.1007/s10750-011-0917-8

    Article  CAS  Google Scholar 

  • Bhattacharya, P. T., Misra, S. R., & Hussain, M. (2016). Nutritional aspects of essential trace elements in oral health and disease: An extensive review. Scientifica, 5464373, 1–12. https://doi.org/10.1155/2016/5464373

    Article  CAS  Google Scholar 

  • Ceron, J. J., Sancho, E., Ferrando, M. D., Gutierrez, C., & Andreu, E. (1997). Changes in carbohydrate metabolism in the eel Anguilla anguilla, during short-term exposure to diazinon. Toxicological and Environmental Chemistry, 60, 201–210. https://doi.org/10.1080/02772249709358464

    Article  CAS  Google Scholar 

  • Christensen, G., Hunt, E., & Fiandt, J. (1977). The effect of methyl mercuric chloride, cadmium chloride and lead nitrate on six biochemical factors of the brook trout (Salvefinus fontinalis). Toxicology and Applied Pharmacology, 42, 532–530. https://doi.org/10.1016/S0041-008X(77)80037-9

    Article  Google Scholar 

  • Congleton, J. L., & La Voie, W. J. (2001). Comparison of blood chemistry values for samples collected from juvenile chinook salmon by three methods. Journal of Aquatic Animal Health, 13, 168–172. https://doi.org/10.1577/1548-8667013\0168:COBCVF[2.0.CO;2

    Article  Google Scholar 

  • Davutluoglu, O. I., Seckin, G., Ersu, C. B., Yilmaz, T., & Sari, B. (2011). Assessment of metal pollution in water and surface sediments of the Seyhan River, Turkey, using different indexes. Clean: Soil, Air, Water, 39(2), 185–194. https://doi.org/10.1002/clen.201000266

    Article  CAS  Google Scholar 

  • Dewi, N. K., & Prabowo, R. (2017). Determination of liver somatic index (LSI) and gonadosomatic index (GSI) value of Carp (Cyprinus carpio) and Nile tilapia (Perca fluviatilis). International Journal of Scientific Research, 7, 220–223.

    Google Scholar 

  • Dhara, K., Saha, S., & Saha, N. C. (2021). Sensitivity of common carp, Cyprinus carpio (Linnaeus, 1758) to the grey list metal, zinc under laboratory condition. Asian Journal of Biological and Life Sciences, 10, 132–140. https://doi.org/10.5530/ajbls.2021.10.20

    Article  CAS  Google Scholar 

  • Dural Eken, M., & Akman, B. (2018). Assessment of heavy metal pollution of seston from freshwater resources poured into the Northeast Mediterranean region. Environmental Monitoring and Assessment, 190, 1–7. https://doi.org/10.1007/s10661-018-6642-2

    Article  CAS  Google Scholar 

  • Eisler, R. (1993). Zinc hazards to fish, wildlife, and invertebrates: a synoptic review (No. 26). US Department of the Interior, Fish and Wildlife Service.

  • El-Naga, A., El-Moselhy, K. M., & Hamed, M. A. (2005). Toxicity of cadmium and copper and their effect on some biochemical parameters of marine fish Mugil sheheli. Egyptian Journal of Aquatic Research, 31(2), 60–71.

    Google Scholar 

  • Elzerman, A.W. (1977). Surface microlayer-microcontaminant interactions in freshwater lakes. Dissertation, The University of Wisconsin-Madison

  • Erel, Y., Morgan, J. J., & Patterson, C. C. (1991). Natural levels of lead and cadmium in a remote mountain stream. Geochimica Et Cosmochimica Acta, 55(3), 707–719.

    Article  CAS  Google Scholar 

  • Ergönül, M. B., Atasağun, S., & Kocatürk, K. (2012). Alterations in the hematological and biochemical parameters and plasma ion concentrations of common carp, (Cyprinus carpio L., 1758) after short term exposure to sub-lethal concentrations of lead. Kafkas Universitesi Veteriner Fakultesi Dergisi, 18(2), 297–302. https://doi.org/10.9775/kvfd.2011.5449

    Article  Google Scholar 

  • Evans, C. W., Hills, J. M., & Dickson, J. M. J. (2000). Heavy metal pollution in Antarctica: A molecular ecotoxicological approach to exposure assessment. Journal of Fish Biology, 57, 8–19. https://doi.org/10.1111/j.1095-8649.2000.tb02241.x

    Article  CAS  Google Scholar 

  • Evans, D. H. (1987). The fish gill: Site of action and model for toxic effects of environmental pollutants. Environmental Health Perspectives, 71, 47–58. https://doi.org/10.1289/ehp.877147

    Article  CAS  Google Scholar 

  • Förstner, U., Wittmann, G. T., & Prosi, F. (1981). Heavy metals in aquatic organisms. Metal Pollution in the Aquatic Environment. https://doi.org/10.1007/978-3-642-69385-4_6

    Article  Google Scholar 

  • Gopal, V., Parvathy, S., & Balasubramanian, R. S. (1997). Effect of heavy metals on the blood protein biochemistry of the fish Cyprinus carpio and its use as a bio-indicator of pollution stress. Environmental Monitoring and Assessment, 48, 117–124. https://doi.org/10.1023/A:1005767517819

    Article  CAS  Google Scholar 

  • Grant, K. R. (2015). Fish hematology and associated disorders. Veterinary Clinics of North America: Exotic Animal Practice, 18(1), 83–103. https://doi.org/10.1016/j.cvex.2014.09.007

    Article  Google Scholar 

  • Guéguen, C., Clarisse, O., Perroud, A., & McDonald, A. (2011). Chemical speciation and partitioning of trace metals (Cd Co, Cu, Ni, Pb) in the lower Athabasca river and its tributaries (Alberta, Canada). Journal of Environmental Monitoring, 13, 2865–2872.

    Article  Google Scholar 

  • Heath, A. G. (1995). Water pollution and fish physiology. CRC Press, Boca Raton, FL. https://doi.org/10.1201/9780203718896

    Article  Google Scholar 

  • Isangedighi, I. A., & David, G. S. (2019). Heavy metals contamination in fish: Effects on human health. Journal of Aquatic Science and Marine Biology, 2(4), 7–12.

    Article  Google Scholar 

  • Javed, M., & Usmani, N. (2019). An overview of the adverse effects of heavy metal contamination on fish health. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 389–403. https://doi.org/10.1007/s40011-017-0875-7

    Article  CAS  Google Scholar 

  • Jezierska, B., & Witeska, M. (2001). Accumulation of metals in fish. Metal toxicity to fish. Wydawnictwo Akademii Podlaskiej, Siedlce, Poland (pp. 51–82).

  • Jezierska, B., Ługowska, K., & Witeska, M. (2009). The effects of heavy metals on embryonic development of fish (a review). Fish Physiology and Biochemistry, 35, 625–640. https://doi.org/10.1007/s10695-008-9284-4

    Article  CAS  Google Scholar 

  • Jiang, D., Wu, Y., Huang, D., Ren, X., & Wang, Y. (2017). Effect of blood glucose level on acute stress response of grass carp Ctenopharyngodon idella. Fish Physiology and Biochemistry, 43(5), 1433–1442. https://doi.org/10.1007/s10695-017-0383-y

    Article  CAS  Google Scholar 

  • Junhagen, S. (2000). From complexity to simplicity: On the application of three tecniques for multivariate data analysis. MPP Working Paper No. 15/2000. Department of Management, Politics and Philosophy, CBS, Copenhagen

  • Kajgrová, L., Blabolil, P., Drozd, B., Roy, K., Regenda, J., Šorf, M., & Vrba, J. (2022). Negative effects of undesirable fish on common carp production and overall structure and functioning of fishpond ecosystems. Aquaculture, 549(737811), 1–9. https://doi.org/10.1016/j.aquaculture.2021.737811

    Article  Google Scholar 

  • Karan, V., Vitorović, S., Tutundžić, V., & Poleksić, V. (1998). Functional enzymes activity and gill histology of carp after copper sulfate exposure and recovery. Ecotoxicology and Environmental Safety, 40(1–2), 49–55. https://doi.org/10.1006/eesa.1998.1641

    Article  CAS  Google Scholar 

  • Kim, S. G., & Kang, J. C. (2004). Effect of dietary copper exposure on accumulation, growth and hematological parameters of the juvenile rockfish, Sebastes Schlegeli. Marine Environmental Research, 58(1), 65–82. https://doi.org/10.1016/j.marenvres.2003.12.004

    Article  CAS  Google Scholar 

  • Landau, S., & Everitt, B.S. (2004). Analysis of repeated measures II: Linear mixed model. A handbook of statistical analysis Using SPSS. Chapman & Hall, Boca Raton, FL. https://doi.org/10.1201/9780203009765

  • Larsson, Å., Bengtsson, B. E., & Haux, C. (1981). Disturbed ion balance in flounder, Platichthys flesus L. exposed to sublethal levels of cadmium. Aquatic Toxicology, 1(1), 19–35. https://doi.org/10.1016/0166-445X(81)90004-7

    Article  CAS  Google Scholar 

  • Lenntech (2014). The European Union (EU)’s drinking water standards. Council Directive 98/83/EC on the quality of water intended for human consumption. Adopted by the Council, on November 3, 1998. http://www.lenntech.com/periodic/elements/. Accessed 11 July 2023.

  • Li, X., Han, T., Zheng, S., & Wu, G. (2021). Hepatic glucose metabolism and its disorders in fish. In W. Guoyao (Ed.), Recent Advances in Animal Nutrition and Metabolism (pp. 207–236). Springer.

    Google Scholar 

  • Lorenzon, S., Francese, M., & Ferrero, E. (2000). Heavy metal toxicity and differential effects on the hyperglycemic stress response in the shrimp Palaemon elegans. Archives of Environmental Contamination and Toxicology, 39, 167–176. https://doi.org/10.1007/s002440010093

    Article  CAS  Google Scholar 

  • MacKay, E., & Bergman, H. (1932). The relation between glycogen and water storage in the liver. Journal of Biological Chemistry, 96, 373–380.

    Article  CAS  Google Scholar 

  • Majumder, R., & Kaviraj, A. (2019). Acute and sublethal effects of organophosphate insecticide chlorpyrifos on freshwater fish Oreochromis niloticus. Drug and Chemical Toxicology, 42(5), 487–495. https://doi.org/10.1080/01480545.2018.1425425

    Article  CAS  Google Scholar 

  • Marshall, W. S. (2002). Na+, Cl-, Ca2+ and Zn2+ transport by fish gills: Retrospective review and prospective synthesis. Journal of Experimental Zoology, 293(3), 264–283. https://doi.org/10.1002/jez.10127

    Article  CAS  Google Scholar 

  • Martinez, C. B. R., & Cólus, I. M. S. (2002). Biomarcadores em peixes neotropicais para o monitoramento da poluição aquática na bacia do rio Tibagi. A bacia do Rio Tibagi, Londrina, PR, Brazil.

  • McCarty, L. S., & Houston, A. H. (1976). Effects of exposure to sublethal levels of cadmium upon water electrolyte status in the goldfish (Carassius auratus). Journal of Fish Biology, 9, 11–19. https://doi.org/10.1111/j.1095-8649.1976.tb04657.x

    Article  CAS  Google Scholar 

  • McGeer, J. C., Szebedinszky, C., McDonald, D. G., & Wood, C. M. (2000). Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout. 1: Iono-regulatory disturbance and metabolic costs. Aquatic Toxicology, 50(3), 231–243. https://doi.org/10.1016/S0166-445X(99)00106-X

    Article  CAS  Google Scholar 

  • Monteiro, S. M., Mancera, J. M., Fernandes, A. F., & Sousa, M. (2005). Copper induced alterations of biochemical parameters in the gill and plasma of Oreochromis niloticus. Comparative Biochemistry and Physiology, 141C, 375–383. https://doi.org/10.1016/j.cbpc.2005.08.002

    Article  CAS  Google Scholar 

  • Moon, T. W. (2001). Glucose intolerance in teleost fish: Fact or fiction? Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 129(2–3), 243–249. https://doi.org/10.1016/S1096-4959(01)00316-5

    Article  CAS  Google Scholar 

  • Mutlu, E., Aydın, S., & Kutlu, B. (2015). Alterations of growth performance and blood chemistry in nile tilapia (Oreochromis niloticus) affected by copper sulfate in long-term exposure. Turkish Journal of Fisheries and Aquatic Sciences, 15, 487–493. https://doi.org/10.4194/1303-2712-v15_2_35

    Article  Google Scholar 

  • Oyewo, E.O. (1998). Industrial sources and distribution of heavy metals in Lagos Lagoon and their biological effects on estuarine animals. Dissertation, University of Lagos, Nigeria

  • Özcan, G., & Balik, S. (2009). Age and growth of Bassan barbel, Barbus pectoralis (Actinopterygii: Cypriniformes: Cyprinidae), under conditions of a dam reservoir. Acta Ichthyologica Et Piscatoria, 39(1), 27–32. https://doi.org/10.3750/AIP2009.39.1.05

    Article  Google Scholar 

  • Padrilah, S. N., Ahmad, S. A., Yasid, N. A., Sabullah, M. K., Daud, H. M., Khalid, A., & Shukor, M. Y. (2017). Toxic effects of copper on liver and cholinesterase of Clarias gariepinus. Environmental Science and Pollution Research, 24(28), 22510–22523. https://doi.org/10.1007/s11356-017-9923-3

    Article  CAS  Google Scholar 

  • Richards, J. G., & Playle, R. C. (1999). Protective effects of calcium against the physiological effects of exposure to a combination of cadmium and copper in rainbow trout (Oncorhynchus mykiss). Canadian Journal of Zoology, 77, 1035–1047. https://doi.org/10.1139/z99-070

    Article  CAS  Google Scholar 

  • Rocha, V. Z., & Libby, P. (2009). Obesity, inflammation, and atherosclerosis. Nature Reviews Cardiology, 6, 399–409. https://doi.org/10.1038/nrcardio.2009.55

    Article  CAS  Google Scholar 

  • Rogers, J. T., Patel, M., Gilmour, K. M., & Wood, C. M. (2005). Mechanisms behind Pb-induced disruption of Na+ and Cl- balance in rainbow trout (Oncorhynchus mykiss). American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 289, R463–R472. https://doi.org/10.1152/ajpregu.00362.2004

    Article  CAS  Google Scholar 

  • Rogers, J. T., Richards, J. G., & Wood, C. M. (2003). Ionoregulatory distruption as the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 64, 215–234. https://doi.org/10.1016/S0166-445X(03)00053-5

    Article  CAS  Google Scholar 

  • Rossi, A., Cazenave, J., Bacchetta, C., Campana, M., & Parma, M. J. (2015). Physiological and metabolic adjustments of Hoplosternum littorale (Teleostei, Callichthyidae) during starvation. Ecological Indicators, 56, 161–170. https://doi.org/10.1016/j.ecolind.2015.04.001

    Article  CAS  Google Scholar 

  • Saltiel, A. R., & Kahn, C. R. (2001). Insulin signaling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799–806. https://doi.org/10.1038/414799a

    Article  CAS  Google Scholar 

  • Sanchez, W., Katsiadaki, I., Piccini, B., Ditche, J. M., & Porcher, J. M. (2008). Biomarker responses in wild three-spined stickleback (Gasterosteus aculeatus L.) as a useful tool for freshwater biomonitoring: A multiparametric approach. Environment International, 34(4), 490–498. https://doi.org/10.1016/j.envint.2007.11.003

    Article  CAS  Google Scholar 

  • SEPA (State Environmental Protection Administration of P.R. China), &AQSIQ (General Administration of Quality Supervision, Inspection and Quarantine of P.R. China) (2002). CNEQS (Chinese National Environmental Quality Standards) for Surface Water. Chinese National Standards GB 3838–2002. SEPA and AQSIQ (in Chinese).

  • Sethuraman, V., Haq, B., Chezhian, A., Shanker, S., & Senthamil Selvan, D. (2011). Changes due to the effect of the heavy metals (HgCl2 and ZnSO4) concentration on the marine fish, Tilapia mossambica (Peters, 1852). Applied Science Research, 3(6), 333–341.

    CAS  Google Scholar 

  • Skaggs, H. S., & Henry, R. P. (2002). Inhibition of carbonic anhydrase in the gills of two euryhaline crabs, Callinectes sapidus and Carcinus maenas, by heavy metals. Comparative Biochemistry and Physiology, 133C, 605–612. https://doi.org/10.1016/S1532-0456(02)00175-8

    Article  CAS  Google Scholar 

  • Souza-Bastos, L. R., & Freire, C. A. (2009). The handling of salt by the neotropical cultured freshwater catfish Rhamdia quelen. Aquaculture, 289(1–2), 167–174. https://doi.org/10.1016/j.aquaculture.2009.01.007

    Article  CAS  Google Scholar 

  • Terry, P. A., & Stone, W. (2001). Biosorption of cadmium and copper contaminated water by Scenedesmusicabundas. Chemosphere, 47, 249–255.

    Article  Google Scholar 

  • TSWQR (Turkish Surface Water Quality Regulation) (2016). The Official Gazette No.: 29327; (Yüzeysel Su Kalitesi Yönetimi Yönetmeliginde Degisiklik Yapılmasına Dair Yönetmelik, in Turkish); The Official Gazette of the Republic of Turkey. http://www.resmigazete.gov.tr/eskiler/2016/08/20160810-9.htm. Accessed 11 July 2023.

  • US EPA. (United States Environmental Protection Agency) (2009). National recommended water quality criteria. Office of Water, Office of Science and Technology (4304T). http://www.rsc.org/dose/title of subordinate document. Accessed 29 Oct 2022

  • US EPA. (United States Environmental Protection Agency) (2009). Ground Water and Drinking Water: National Primary Drinking Water Regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed 11 July 2023.

  • Vinodhini, R., & Narayanan, M. (2009). The impact of toxic heavy metals on the hematological parameters in common carp (Cyprinus carpio L.). Iranian Journal of Environmental Health Science & Engineering, 6(1), 23–28.

    CAS  Google Scholar 

  • Watson, T. A., & McKeown, B. A. (1976). The effect of sublethal concentrations of zinc on growth and plasma glucose levels in rainbow trout, Salmo gairdneri (Richardson). Journal of Wildlife Diseases, 12(2), 263–270. https://doi.org/10.7589/0090-3558-12.2.263

    Article  CAS  Google Scholar 

  • WHO. (World Health Organization) (1998). Copper Environmental Health Criteria 200. IPCS International Program on Chemical Safety, WHO, Geneva

  • WHO. (World Health Organization) (2017). Guidelines for Drinking-water Quality, Incorporating the First Addendum, WHO, Geneva

  • Witeska, M. (2005). Stress in fish-hematological and immunological effects of heavy metals. Electronic Journal of Ichthyology, 1(1), 35–41.

    Google Scholar 

  • Witeska, M., Kondera, E., Ługowska, K., & Bojarski, B. (2022). Hematological methods in fish–Not only for beginners. Aquactic, 547(737498), 1–17. https://doi.org/10.1016/j.aquaculture.2021.737498

    Article  CAS  Google Scholar 

  • Wu, S. M., Jong, K. J., & Kuo, S. Y. (2003). Effects of copper sulfate on Ion balance and growth in tilapia larvae (Oreochromis mossambicus). Archives of Environmental Contamination and Toxicology, 45(3), 357–363. https://doi.org/10.1007/s00244-003-0122-5

    Article  CAS  Google Scholar 

  • Yeşilbudak, B. (2022). Summer season is more challenging for the fish Clarias gariepinus in a reservoir from Turkey. Inland Water Biology, 15(5), 624–631. https://doi.org/10.1134/S1995082922050054

    Article  Google Scholar 

  • Yi, Y., Yang, Z., & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159(10), 2575–2585. https://doi.org/10.1016/j.envpol.2011.06.011

    Article  CAS  Google Scholar 

Download references

Funding

The author declared that no funds, grands, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The author contributed to the study conception and design. Material preparation, data collection, and analysis were performed by BY. The first draft of the manuscript was written by BY, and the author commented on the previous versions of the manuscript. The author read and approved the final manuscript.

Corresponding author

Correspondence to Burcu Yeşilbudak.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Human and animals rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeşilbudak, B. An experiment on the glucose metabolite, serum electrolytes, and somatic characteristics of the Levantine Barbel Luciobarbus pectoralis (Heckel, 1843) under the effect of heavy metals. Environ Geochem Health 46, 6 (2024). https://doi.org/10.1007/s10653-023-01814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-023-01814-2

Keywords

Navigation