Skip to main content
Log in

Copper in airborne fine particulate matter (PM2.5) from urban sites causes the upregulation of pro-inflammatory cytokine IL-8 in human lung epithelial A549 cells

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Fine atmospheric particles, such as PM2.5, are strongly related to the onset and exacerbation of inflammatory responses leading to the development of respiratory and cardiovascular diseases. PM2.5 is a complex mixture of tiny particles with different properties (i.e., size, morphology, and chemical components). Moreover, the mechanism by which PM2.5 induces inflammatory responses has not been fully elucidated. Therefore, it is necessary to determine the composition of PM2.5 to identify the main factors causing PM2.5-associated inflammation and diseases. In the present study, we investigated PM2.5 from two sites (Fukue, a remote monitoring site, and Kawasaki, an urban monitoring site) with greatly different environments and PM2.5 compositions. The results of ICP-MS and EDX-SEM indicated that PM2.5 from Kawasaki contained more metals and significantly induced the expression of the pro-inflammatory cytokine gene IL-8 compared to the PM2.5 from Fukue. We also verified the increased secretion of IL-8 protein from exposure to PM2.5 from Kawasaki. We further investigated their effects on inflammatory response and cytotoxicity using metal nanoparticles (Cu, Zn, and Ni) and ions and found that the Cu nanoparticles caused a dose-dependent increase in IL-8 expression together with significant cell death. We also found that Cu nanoparticles enhanced the secretion of IL-8 protein. These results suggest that Cu in PM2.5 is involved in lung inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article. Further inquiries can be directed to the corresponding author.

Abbreviations

PM2.5 :

Particulate matter 2.5

OC:

Organic carbon

EC:

Elementary carbon

PAH:

Polycyclic aromatic hydrocarbons

IL-8:

Interleukin 8

PTFE:

Polytetrafluoroethylene

ICP-MS:

Inductively coupled plasma mass spectrometry

SEM–EDX:

Scanning electron microscopy and energy-dispersive X-ray spectroscopy

PBS:

Phosphate buffer saline

COPD:

Chronic obstructive pulmonary disease

References

  • Achilleos, S., Kioumourtzoglou, M. A., Wu, C. D., Schwartz, J. D., Koutrakis, P., & Papatheodorou, S. I. (2017). Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis. Environment International, 109, 89–100. https://doi.org/10.1016/j.envint.2017.09.010

    Article  CAS  Google Scholar 

  • Astort, F., Sittner, M., Ferraro, S. A., Orona, N. S., Maglione, G. A., De la Hoz, A., & Tasat, D. R. (2014). Pulmonary inflammation and cell death in mice after acute exposure to air particulate matter from an industrial region of Buenos Aires. Archives of Environmental Contamination and Toxicology, 67(1), 87–96. https://doi.org/10.1007/s00244-013-9975-4

    Article  CAS  Google Scholar 

  • Birmili, W., Allen, A. G., Bary, F., & Harrison, R. M. (2006). Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environmental Science & Technology, 40(4), 1144–1153.

    Article  CAS  Google Scholar 

  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691.

    Article  CAS  Google Scholar 

  • Buxaderas, S. C., & Farre-Rovira, R. (1986). Whole blood and serum copper levels in relation to sex and age. Revista Espanola De Fisiologia, 42(2), 213–217.

    CAS  Google Scholar 

  • Chandra, I., Seto, T., Otani, Y., Inomata, Y., Hama, N., Yoshino, A., Takami, A., & Takegawa, N. (2018). Current situation of atmospheric nanoparticles in Fukue Island, Japan. Tellus B: Chemical and Physical Meteorology, 70(1), 1–12. https://doi.org/10.1080/16000889.2018.1498688

    Article  CAS  Google Scholar 

  • Delfino, R. J., Sioutas, C., & Malik, S. (2005). Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environmental Health Perspectives, 113(8), 934–946. https://doi.org/10.1289/ehp.7938

    Article  Google Scholar 

  • Ding, A., Huang, X., & Fu, C. (2017). Air pollution and weather interaction in East Asia. In: Oxford University Press.

  • Figliuzzi, M., Tironi, M., Longaretti, L., Mancini, A., Teoldi, F., Sangalli, F., & Remuzzi, A. (2020). Copper-dependent biological effects of particulate matter produced by brake systems on lung alveolar cells. Archives of Toxicology, 94(9), 2965–2979. https://doi.org/10.1007/s00204-020-02812-4

    Article  CAS  Google Scholar 

  • Gavett, S. H., Haykal-Coates, N., Copeland, L. B., Joachim Heinrich, M., & Gilmour, I. (2003). Metal composition of ambient PM2.5 influences severity of allergic airways disease in mice. Environmental Health Perspectives, 111(12), 1471–1477. https://doi.org/10.1289/ehp.6300

    Article  Google Scholar 

  • Günther, V., Lindert, U., & Schaffner, W. (2012). The taste of heavy metals: Gene regulation by MTF-1. Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research, 1823(9), 1416–1425. https://doi.org/10.1016/j.bbamcr.2012.01.005

    Article  CAS  Google Scholar 

  • He, X., Liu, P., Zhao, W., Hongmei, X., Zhang, R., & Shen, Z. (2021). Size distribution of water-soluble metals in atmospheric particles in Xi’an, China: Seasonal variations, bioavailability, and health risk assessment. Atmospheric Pollution Research, 12(6), 101090. https://doi.org/10.1016/j.apr.2021.101090

    Article  CAS  Google Scholar 

  • Hirshon, J. M., Shardell, M., Alles, S., Powell, J. L., Squibb, K., Ondov, J., & Blaisdell, C. J. (2008). Elevated ambient air zinc increases pediatric asthma morbidity. Environmental Health Perspectives, 116(6), 826–831. https://doi.org/10.1289/ehp.10759

    Article  CAS  Google Scholar 

  • Horie, M., Fujita, K., Kato, H., Endoh, S., Nishio, K., Komaba, L. K., Nakamura, A., Miyauchi, A., Kinugasa, S., Hagihara, Y., Niki, E., Yoshida, Y., & Iwahashi, H. (2012). Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: Metal ion release, adsorption ability and specific surface area. Metallomics, 4(4), 350–360. https://doi.org/10.1039/c2mt20016c

    Article  CAS  Google Scholar 

  • Horie, M., Shimizu, K., & Tabei, Y. (2018). Validation of metallothionein, interleukin-8, and heme oxygenase-1 as markers for the evaluation of cytotoxicity caused by metal oxide nanoparticles. Toxicology Mechanisms and Methods, 28(8), 630–638. https://doi.org/10.1080/15376516.2018.1486931

    Article  CAS  Google Scholar 

  • Huiying, F., Liu, X., Li, W., Yuyao, Z., Zhou, F., Shou, Q., & Ding, Z. (2020). PM2.5 exposure induces inflammatory response in macrophages via the TLR4/COX-2/NF-kappaB pathway. Inflammation, 43(5), 1948–1958. https://doi.org/10.1007/s10753-020-01269-y

    Article  CAS  Google Scholar 

  • Jeng, H. A., & Swanson, J. (2006). Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health. Part a, Toxic/hazardous Substances & Environmental Engineering, 41(12), 2699–2711. https://doi.org/10.1080/10934520600966177

    Article  CAS  Google Scholar 

  • Jeong, S.-C., Cho, Y., Song, M.-K., Lee, E., & Ryu, J.-C. (2017). Epidermal growth factor receptor (EGFR)-MAPK-nuclear factor(NF)-κB-IL8: A possible mechanism of particulate matter(PM) 2.5-induced lung toxicity. Environmental Toxicology, 32(5), 1628–1636. https://doi.org/10.1002/tox.22390

    Article  CAS  Google Scholar 

  • Kanada, M., Fujita, T., Fujii, M., & Ohnishi, S. (2013). The long-term impacts of air pollution control policy: Historical links between municipal actions and industrial energy efficiency in Kawasaki City, Japan. Journal of Cleaner Production, 58, 92–101. https://doi.org/10.1016/j.jclepro.2013.04.015

    Article  CAS  Google Scholar 

  • Kanaya, Y., Yamaji, K., Miyakawa, T., Taketani, F., Zhu, C., Choi, Y., Komazaki, Y., Ikeda, K., Kondo, Y., & Klimont, Z. (2020). Rapid reduction in black carbon emissions from China: Evidence from 2009–2019 observations on Fukue Island, Japan. Atmospheric Chemistry and Physics, 20(11), 6339–6356. https://doi.org/10.5194/acp-20-6339-2020

    Article  CAS  Google Scholar 

  • Kelly, F. J., & Fussell, J. C. (2015). Air pollution and public health: Emerging hazards and improved understanding of risk. Environmental Geochemistry and Health, 37(4), 631–649. https://doi.org/10.1007/s10653-015-9720-1

    Article  CAS  Google Scholar 

  • Kloog, I., Coull, B. A., Zanobetti, A., Koutrakis, P., & Schwartz, J. D. (2012). Acute and chronic effects of particles on hospital admissions in New-England. PLoS ONE, 7(4), e34664. https://doi.org/10.1371/journal.pone.0034664

    Article  CAS  Google Scholar 

  • Lee, K., Chandra, I., Seto, T., Inomata, Y., Hayashi, M., Takami, A., Yoshino, A., & Otani, Y. (2019). Aerial observation of atmospheric nanoparticles on Fukue Island, Japan. Aerosol and Air Quality Research, 19(5), 981–994. https://doi.org/10.4209/aaqr.2018.03.0077

    Article  CAS  Google Scholar 

  • Leikauf, G. D., Kim, S. H., & Jang, A. S. (2020). Mechanisms of ultrafine particle-induced respiratory health effects. Experimental & Molecular Medicine, 52(3), 329–337. https://doi.org/10.1038/s12276-020-0394-0

    Article  CAS  Google Scholar 

  • Liu, Q., Zhaojie, L., Xiong, Y., Huang, F., Zhou, J., & Schauer, J. J. (2020). Oxidative potential of ambient PM2.5 in Wuhan and its comparisons with eight areas of China. Science of the Total Environment, 701, 134844. https://doi.org/10.1016/j.scitotenv.2019.134844

    Article  CAS  Google Scholar 

  • Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: A review. Frontiers in Public Health, 8, 14. https://doi.org/10.3389/fpubh.2020.00014

    Article  Google Scholar 

  • Mbelambela, E. P., Muchanga, S. M. J., Villanueva, A. F., Eitoku, M., Yasumitsu-Lovell, K., Hirota, R., Shimotake, Y., Sokolo, G. J., Mori, A., & Suganuma, N. (2020). Biomass energy, particulate matter (PM2.5), and the prevalence of chronic obstructive pulmonary disease (COPD) among congolese women living near of a cement plant, in Kongo Central Province. Environmental Science & Pollution Research, 27(32), 40706–40714. https://doi.org/10.1007/s11356-020-10099-2

    Article  CAS  Google Scholar 

  • Michikawa, T., Sasaki, J., Yamazaki, S., Takami, A., Asakura, K., Imamura, H., Ueda, K., Saito, S., Hoshi, J., Yoshino, A., Sugata, S., Nitta, H., & Nishiwaki, Y. (2022). A case-crossover analysis of the association between exposure to total PM2.5 and its chemical components and emergency ambulance dispatches in Tokyo. Environmental Science & Technology, 56(11), 7319–7327. https://doi.org/10.1021/acs.est.1c08219

    Article  CAS  Google Scholar 

  • MohseniBandpi, A., Eslami, A., Shahsavani, A., Khodagholi, F., & Alinejad, A. (2017). Physicochemical characterization of ambient PM 2.5 in Tehran air and its potential cytotoxicity in human lung epithelial cells (A549). Science of the Total Environment, 593–594, 182–190. https://doi.org/10.1016/j.scitotenv.2017.03.150

    Article  CAS  Google Scholar 

  • Moon, D., Park, S. J., Kim, S., Kim, J., Kim, M., Kim, K., Kim, Y. S., & Kim, J. (2018). Altered proinflammatory cytokines and M1 polarization induced by Pm2.5 in alveolar macrophages. Applied Ecology and Environmental Research, 16(6), 7699–7712. https://doi.org/10.15666/aeer/1606_76997712

    Article  Google Scholar 

  • Moryani, H. T., Kong, S., Jiangkun, D., & Bao, J. (2020). Health risk assessment of heavy metals accumulated on PM2.5 fractioned road dust from two cities of Pakistan. International Journal of Environmental Research and Public Health, 17(19), 7124. https://doi.org/10.3390/ijerph17197124

    Article  CAS  Google Scholar 

  • Mukaida, N. (2003). Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. American Journal of Physiology-Lung Cellular and Molecular Physiology, 284(4), L566–L577. https://doi.org/10.1152/ajplung.00233.2002

    Article  CAS  Google Scholar 

  • Qazi, B. S., Tang, K., & Qazi, A. (2011). Recent advances in underlying pathologies provide insight into interleukin-8 expression-mediated inflammation and angiogenesis. International Journal of Inflammation. https://doi.org/10.4061/2011/908468

    Article  Google Scholar 

  • Rahmatinia, T., Kermani, M., Farzadkia, M., Jafari, A. J., Delbandi, A.-A., Rashidi, N., & Fanaei, F. (2022). The effect of PM2.5-related hazards on biomarkers of bronchial epithelial cells (A549) inflammation in Karaj and Fardis cities. Environmental Science and Pollution Research, 29(2), 2172–2182. https://doi.org/10.1007/s11356-021-15723-3

    Article  CAS  Google Scholar 

  • Reynolds, C. J., Quigley, K., Cheng, X., Suresh, A., Tahir, S., Ahmed-Jushuf, F., Nawab, K., Choy, K., Walker, S. A., Mathie, S. A., Sim, M., Stowell, J., Manji, J., Pollard, T., Altmann, D. M., & Boyton, R. J. (2018). Lung defense through IL-8 carries a cost of chronic lung remodeling and impaired function. American Journal of Respiratory Cell and Molecular Biology, 59(5), 557–571. https://doi.org/10.1165/rcmb.2018-0007OC

    Article  CAS  Google Scholar 

  • Shaddick, G., Thomas, M. L., Mudu, P., Ruggeri, G., & Gumy, S. (2020). Half the world’s population are exposed to increasing air pollution. NPJ Climate and Atmospheric Science, 3(1), 23. https://doi.org/10.1038/s41612-020-0124-2

    Article  CAS  Google Scholar 

  • Suzuki, R., Yoshino, A., Kaneyasu, N., Takami, A., Hayashi, M., Hara, K., Watanabe, I., & Hatakeyama, S. (2014). Characteristics and source apportionment of trace metals in the aerosols at Fukue Island and Fukuoka City. Journal of Japan Society for Atmospheric Environment/taiki Kankyo Gakkaishi, 49(1), 15–25.

    CAS  Google Scholar 

  • Ude, V. C., Brown, D. M., Viale, L., Kanase, N., Stone, V., & Johnston, H. J. (2017). Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration. Particle and Fibre Toxicology, 14(1), 31. https://doi.org/10.1186/s12989-017-0211-7

    Article  CAS  Google Scholar 

  • Wang, H., Song, L., Wenhui, J., Xuguang Wang, L., Dong, Y. Z., Ya, P., Yang, C., & Li, F. (2017). The acute airway inflammation induced by PM2.5 exposure and the treatment of essential oils in Balb/c mice. Scientific Reports, 7(1), 4425. https://doi.org/10.1038/srep44256

    Article  Google Scholar 

  • Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease, 8(1), E69-74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19

    Article  Google Scholar 

  • Yan, Z., Wang, J., Li, J., Jiang, N., Zhang, R., Yang, W., Yao, W., & Wu, W. (2016). Oxidative stress and endocytosis are involved in upregulation of interleukin-8 expression in airway cells exposed to PM2.5. Environmental Toxicology, 31(12), 1869–1878. https://doi.org/10.1002/tox.22188

    Article  CAS  Google Scholar 

  • Yang, L., Lin, Z., Wang, Y., Li, C., Xu, W., Li, Q., Yao, W., Song, Z., & Liu, G. (2018). Nickle(II) ions exacerbate bleomycin-induced pulmonary inflammation and fibrosis by activating the ROS/Akt signaling pathway. Environmental Science and Pollution Research International, 25(5), 4406–4418. https://doi.org/10.1007/s11356-017-0525-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. K. Takahashi and Mr. Yoshimura for their help in the sampling of atmospheric PM2.5 in Kawasaki, Japan.

Funding

This research was funded by the JST CREST Grant Number JPMJCR18H4 (to T.S., R.S.), Japan.

Author information

Authors and Affiliations

Authors

Contributions

CA, YI, RK, MS, AF, YN, and HS contributed by conducting experiments, summarizing data, and/or generating the necessary reagents. YI, AF, YN, TS, and RS conceived and directed the study. YI, AF, YN, TS, and RS participated in the writing of the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Takafumi Seto or Ryo Suzuki.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13312 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amma, C., Inomata, Y., Kohno, R. et al. Copper in airborne fine particulate matter (PM2.5) from urban sites causes the upregulation of pro-inflammatory cytokine IL-8 in human lung epithelial A549 cells. Environ Geochem Health 45, 5879–5891 (2023). https://doi.org/10.1007/s10653-023-01599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01599-4

Keywords

Navigation