Skip to main content

Advertisement

Log in

Modelling the impact of climate change on dengue outbreaks and future spatiotemporal shift in Pakistan

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Climate change has a significant impact on the intensity and spread of dengue outbreaks. The objective of this study is to assess the number of dengue transmission suitable days (DTSD) in Pakistan for the baseline (1976–2005) and future (2006–2035, 2041–2070, and 2071–2099) periods under Representative Concentration Pathway (RCP4.5 and RCP8.5) scenarios. Moreover, potential spatiotemporal shift and future hotspots of DTSD due to climate change were also identified. The analysis is based on fourteen CMIP5 models that have been downscaled and bias-corrected with quantile delta mapping technique, which addresses data stationarity constraints while preserving future climate signal. The results show a higher DTSD during the monsoon season in the baseline in the study area except for Sindh (SN) and South Punjab (SP). In future periods, there is a temporal shift (extension) towards pre- and post-monsoon. During the baseline period, the top ten hotspot cities with a higher frequency of DTSD are Karachi, Hyderabad, Sialkot, Jhelum, Lahore, Islamabad, Balakot, Peshawar, Kohat, and Faisalabad. However, as a result of climate change, there is an elevation-dependent shift in DTSD to high-altitude cities, e.g. in the 2020s, Kotli, Muzaffarabad, and Drosh; in the 2050s, Garhi Dopatta, Quetta, and Zhob; and in the 2080s, Chitral and Bunji. Karachi, Islamabad, and Balakot will remain highly vulnerable to dengue outbreaks for all the future periods of the twenty-first century. Our findings also indicate that DTSD would spread across Pakistan, particularly in areas where we have never seen dengue infections previously. The good news is that the DTSD in current hotspot cities is projected to decrease in the future due to climate change. There is also a temporal shift in the region during the post- and pre-monsoon season, which provides suitable breeding conditions for dengue mosquitos due to freshwater; therefore, local authorities need to take adaption and mitigation actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abbas, S., & Ilyas, M. (2018). Assessing the impact of EI Nino southern oscillation index and land surface temperature fluctuations on dengue fever outbreaks using ARIMAX (p)-PARX (p)-NBARX (p) models. Arabian Journal of Geosciences, 11(24), 1–12.

    Article  Google Scholar 

  • Acharya, B. K., Cao, C., Xu, M., Khanal, L., Naeem, S., & Pandit, S. (2018). Present and future of dengue fever in Nepal: Mapping climatic suitability by ecological niche model. International Journal of Environmental Research and Public Health, 15(2), 187.

    Article  Google Scholar 

  • Ahmed, S., Ali, N., Ashraf, S., Ilyas, M., Tariq, W. U., & Chotani, R. A. (2008). Dengue fever outbreak: A clinical management experience. Journal of the College of Physicians and Surgeons–Pakistan, 18(1), 8–12.

    Google Scholar 

  • Ahmed, S., Mohammad, W. W., Hamid, F., Akhter, A., Afzal, R. K., & Mahmood, A. (2013). The 2011 dengue haemorrhagic fever outbreak in Lahore-an account of clinical parameters and pattern of haemorrhagic complications. Journal of the College of Physicians and Surgeons–Pakistan, 23(7), 463–467.

    Google Scholar 

  • Akram, D. S., Igarashi, A., & Takasu, T. (1998). Dengue virus infection among children with undifferentiated fever in Karachi. The Indian Journal of Pediatrics, 65(5), 735–740.

    Article  CAS  Google Scholar 

  • Akter, R., Hu, W., Gatton, M., Bambrick, H., Naish, S., & Tong, S. (2020). Different responses of dengue to weather variability across climate zones in Queensland Australia. Environmental Research, 184, 109222.

    Article  CAS  Google Scholar 

  • Ali, N., Nadeem, A., Anwar, M., Tariq, W. U., & Chotani, R. A. (2006). Dengue fever in malaria endemic areas. Journal of the College of Physicians and Surgeons Pakistan: JCPSP, 16(5), 340–342.

    Google Scholar 

  • Ali, S., Eum, H. I., Cho, J., Dan, L., Khan, F., Dairaku, K., & Fahad, S. (2019). Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmospheric Research, 222, 114–133.

    Article  Google Scholar 

  • Ali, S., Kiani, R. S., Reboita, M. S., Dan, L., Eum, H. I., Cho, J., & Shreshta, M. L. (2021). Identifying hotspots cities vulnerable to climate change in Pakistan under CMIP5 climate projections. International Journal of Climatology, 41(1), 559–581.

    Article  Google Scholar 

  • Ali, S., Li, D., Congbin, F., & Khan, F. (2015). Twenty first century climatic and hydrological changes over upper Indus basin of Himalayan region of Pakistan. Environmental Research Letters, 10(1), 014007.

    Article  Google Scholar 

  • Al-Nefaie, H., Alsultan, A., & Abusaris, R. (2022). Temporal and spatial patterns of dengue geographical distribution in Jeddah, Saudi Arabia. Journal of Infection and Public Health, 15(9), 1025–1035.

    Article  Google Scholar 

  • Banu, S., Hu, W., Guo, Y., Hurst, C., & Tong, S. (2014). Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh. Environment International, 63, 137–142.

    Article  Google Scholar 

  • Banu, Z., Chowdhury, M., Hossain, M., & Nakagami, K. (2013). Contamination and ecological risk assessment of heavy metal in the sediment of Turag river, Bangladesh: An index analysis approach. Journal of Water Resource and Protection, 5(2), 239–248.

  • Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., & Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507.

    Article  CAS  Google Scholar 

  • Brady, O. J., Gething, P. W., Bhatt, S., Messina, J. P., Brownstein, J. S., Hoen, A. G., & Hay, S. I. (2012). Refining the global spatial limits of dengue virus transmission by evidence-based consensus.

  • Brady, O. J., Johansson, M. A., Guerra, C. A., Bhatt, S., Golding, N., Pigott, D. M., & Hay, S. I. (2013). Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites Vectors, 6(1), 1–12.

    Article  Google Scholar 

  • Brekke L, Thrasher BL, Maurer EP, Pruitt T., (2013). Downscaled CMIP3 and CMIP5 Climate Projections. URL: http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/ (Accessed on 08/06/2019).

  • Butterworth, M. K., Morin, C. W., & Comrie, A. C. (2017). An analysis of the potential impact of climate change on dengue transmission in the southeastern United States. Environmental Health Perspectives, 125(4), 579–585.

    Article  Google Scholar 

  • Campbell-Lendrum, D., Manga, L., Bagayoko, M., & Sommerfeld, J. (2015). Climate change and vector-borne diseases: What are the implications for public health research and policy? Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1665), 20130552.

    Article  Google Scholar 

  • Cannon, A. J. (2018). Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Climate Dynamics, 50(1–2), 31–49.

    Article  Google Scholar 

  • Cannon, A. J., Sobie, S. R., & Murdock, T. Q. (2015). Bias correction of GCM precipitation by quantile mapping: How well do the methods preserve changes in quantiles and extremes? Journal of Climate, 28(17), 2385–2404.

    Article  Google Scholar 

  • Chan, Y. C., Tan, H. C., Seah, C. L. K., Li, J., Chow, V. T. K., Salahuddin, N. I., & Khan, J. (1995). Dengue haemorrhagic fever outbreak in Karachi, Pakistan, 1994.

  • Chan, M., & Johansson, M. A. (2012). The incubation periods of dengue viruses. PLoS ONE, 7(11), e50972.

    Article  CAS  Google Scholar 

  • Christophers, S. (1960). Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. Aëdes aegypti (L.) the Yellow Fever Mosquito: its Life History, Bionomics and Structure.

  • Clarke, L. E. (2007). Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations: Report (Vol. 2). US Climate Change Science Program.

  • Colón-González, F. J., Fezzi, C., Lake, I. R., & Hunter, P. R. (2013). The effects of weather and climate change on dengue. PLoS Neglected Tropical Diseases, 7(11), e2503.

    Article  Google Scholar 

  • Department of Meteorology—Sri Lanka. (2014). Retrieved October 10, 2016, from https:// www.meteo.gov.lk.

  • Dhimal, M., Gautam, I., Joshi, H. D., O’Hara, R. B., Ahrens, B., & Kuch, U. (2015). Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal. PLoS Neglected Tropical Diseases, 9(3), e0003545.

    Article  Google Scholar 

  • Dhimal, M., Kramer, I. M., Phuyal, P., Budhathoki, S. S., Hartke, J., Ahrens, B., & Müller, R. (2021). Climate change and its association with the expansion of vectors and vector-borne diseases in the Hindu Kush Himalayan region: A systematic synthesis of the literature. Advances in Climate Change Research, 12(3), 421–429.

    Article  Google Scholar 

  • Ebi, K. L., & Nealon, J. (2016). Dengue in a changing climate. Environmental Research, 151, 115–123.

    Article  CAS  Google Scholar 

  • Esteva, L., & Yang, H. M. (2015). Assessing the effects of temperature and dengue virus load on dengue transmission. Journal of Biological Systems, 23(04), 1550027.

    Article  Google Scholar 

  • Fatima, S. H., Atif, S., Rasheed, S. B., Zaidi, F., & Hussain, E. (2016). Species distribution modelling of aedes aegypti in two dengue-endemic regions of Pakistan. Tropical Medicine International Health, 21(3), 427–436.

    Article  Google Scholar 

  • Fatima, Z., Idrees, M., Bajwa, M. A., Tahir, Z., Ullah, O., Zia, M. Q., & Ali, M. (2011). Serotype and genotype analysis of dengue virus by sequencing followed by phylogenetic analysis using samples from three mini outbreaks-2007-2009 in Pakistan. BMC Microbiology, 11(1), 1–8.

    Article  Google Scholar 

  • Geo TV. (2021). 34 dead as dengue cases in Pakistan cross 15,000. Retrieved October, 25, 2021, from https://www.geo.tv/latest/375766-16-dead-as-dengue-cases-in-punjab-cross-5000/.

  • Geo TV. (2022).Pakistan reports over 52,000 dengue cases in 2021. Retrieved June, 3,2022 from https://www.geo.tv/latest/391391-pakistan-reports-over-52000-dengue-cases-in-2021/.

  • Githeko, A. K., Lindsay, S. W., Confalonieri, U. E., & Patz, J. A. (2000). Climate change and vector-borne diseases: A regional analysis. Bulletin of the World Health Organization, 78(9), 1136–1147.

    CAS  Google Scholar 

  • Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Engen-Skaugen, T. (2012). Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods. Hydrology and Earth System Sciences, 16, 3383–3390.

    Article  Google Scholar 

  • Huber, J. H., Childs, M. L., Caldwell, J. M., & Mordecai, E. A. (2018). Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. PLoS Neglected Tropical Diseases, 12(5), e0006451.

    Article  Google Scholar 

  • Humayoun, M. A., Waseem, T., Jawa, A. A., Hashmi, M. S., & Akram, J. (2010). Multiple dengue serotypes and high frequency of dengue hemorrhagic fever at two tertiary care hospitals in Lahore during the 2008 dengue virus outbreak in Punjab, Pakistan. International Journal of Infectious Diseases, 14, e54–e59.

    Article  Google Scholar 

  • Ilyas, M., Abbas, S., Naz, S. A., & Abbas, M. (2019). The impact of climatic influence on dengue infectious disease in Karachi Pakistan. Int J of Mosquito Res, 6(6), 04–13.

    Google Scholar 

  • Jacome-Galarza, C. E., Percin, G. I., Muller, J. T. et al (2019). Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature, 568, 541–545.

  • Jamil, B., Hasan, R., Zafar, A., Bewley, K., Chamberlain, J., Mioulet, V., & Hewson, R. (2007). Dengue virus serotype 3, Karachi, Pakistan. Emerging Infectious Diseases, 13(1), 182.

    Article  Google Scholar 

  • Jing-Chun, F. A. N., & Qi-Yong, L. I. U. (2019). Potential impacts of climate change on dengue fever distribution using RCP scenarios in China. Advances in Climate Change Research, 10(1), 1–8.

    Article  Google Scholar 

  • Kakarla, S. G., Caminade, C., Mutheneni, S. R., Morse, A. P., Upadhyayula, S. M., Kadiri, M. R., & Kumaraswamy, S. (2019). Lag effect of climatic variables on dengue burden in India. Epidemiology & Infection, 147.

  • Kakarla, S. G., Bhimala, K. R., Kadiri, M. R., Kumaraswamy, S., & Mutheneni, S. R. (2020). Dengue situation in India: Suitability and transmission potential model for present and projected climate change scenarios. Science of the Total Environment, 739, 140336.

    Article  CAS  Google Scholar 

  • Khan, E., Hasan, R., Mehraj, V., Nasir, A., Siddiqui, J., & Hewson, R. (2008). Co-circulations of two genotypes of dengue virus in 2006 out-break of dengue hemorrhagic fever in Karachi Pakistan. Journal of Clinical Virology, 43(2), 176–179.

    Article  CAS  Google Scholar 

  • Khan, E., Siddiqui, J., Shakoor, S., Mehraj, V., Jamil, B., & Hasan, R. (2007). Dengue outbreak in Karachi, Pakistan, 2006: Experience at a tertiary care center. Transactions of the Royal Society of Tropical Medicine and Hygiene, 101(11), 1114–1119.

    Article  CAS  Google Scholar 

  • Khan, F., Ali, S., Mayer, C., Ullah, H., & Muhammad, S. (2022). Climate change and spatio-temporal trend analysis of climate extremes in the homogeneous climatic zones of Pakistan during 1962–2019. PLoS ONE, 17(7), e0271626.

    Article  CAS  Google Scholar 

  • Khan, J., Khan, I., & Amin, I. (2016). A comprehensive entomological, serological and molecular study of 2013 dengue outbreak of Swat, Khyber Pakhtunkhwa Pakistan. PLoS ONE, 11(2), e0147416.

    Article  Google Scholar 

  • Kraemer, M. U., Sinka, M. E., Duda, K. A., Mylne, A. Q., Shearer, F. M., Barker, C. M., & Hay, S. I. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife, 4, e08347.

    Article  Google Scholar 

  • Liu-Helmersson, J., Quam, M., Wilder-Smith, A., Stenlund, H., Ebi, K., Massad, E., & Rocklöv, J. (2016). Climate change and Aedes vectors: 21st century projections for dengue transmission in Europe. eBioMedicine, 7, 267–277.

    Article  Google Scholar 

  • Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A., & Rocklöv, J. (2014). Vectorial capacity of Aedes aegypti: Effects of temperature and implications for global dengue epidemic potential. PLoS ONE, 9(3), e89783.

    Article  Google Scholar 

  • Liyanage, P., Tissera, H., Sewe, M., Quam, M., Amarasinghe, A., Palihawadana, P., & Rocklöv, J. (2016). A spatial hierarchical analysis of the temporal influences of the El Nino-southern oscillation and weather on dengue in Kalutara District, Sri Lanka. International Journal of Environmental Research and Public Health, 13(11), 1087.

    Article  Google Scholar 

  • Mahmood, N., Rana, M. Y., Qureshi, Z., Mujtaba, G., & Shaukat, U. (2012). Prevalence and molecular characterization of dengue viruses serotypes in 2010 epidemic. The American Journal of the Medical Sciences, 343(1), 61–64.

    Article  Google Scholar 

  • Messina, J. P., Brady, O. J., Pigott, D. M., Golding, N., Kraemer, M. U., Scott, T. W., & Hay, S. I. (2015). The many projected futures of dengue. Nature Reviews Microbiology, 13(4), 230–239.

    Article  CAS  Google Scholar 

  • Monaghan, A. J., Sampson, K. M., Steinhoff, D. F., Ernst, K. C., Ebi, K. L., Jones, B., & Hayden, M. H. (2018). The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti. Climatic Change, 146(3), 487–500.

    Article  CAS  Google Scholar 

  • Mordecai, E. A., Cohen, J. M., Evans, M. V., Gudapati, P., Johnson, L. R., Lippi, C. A., & Weikel, D. P. (2017). Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Neglected Tropical Diseases, 11(4), e0005568.

    Article  Google Scholar 

  • Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M., & LaBeaud, A. D. (2020). Climate change could shift disease burden from malaria to arboviruses in Africa. The Lancet Planetary Health, 4(9), e416–e423.

    Article  Google Scholar 

  • Morin, C. W., Comrie, A. C., & Ernst, K. (2013). Climate and dengue transmission: Evidence and implications. Environmental Health Perspectives, 121(11–12), 1264–1272.

    Article  Google Scholar 

  • Muhammad, S., Tian, L., & Khan, A. (2019). Early twenty-first century glacier mass losses in the Indus Basin constrained by density assumptions. Journal of Hydrology, 574, 467–475.

    Article  Google Scholar 

  • Naish, S., Dale, P., Mackenzie, J. S., McBride, J., Mengersen, K., & Tong, S. (2014). Climate change and dengue: A critical and systematic review of quantitative modelling approaches. BMC Infectious Diseases, 14(1), 1–14.

    Article  Google Scholar 

  • Naqvi, S. A. A., Jan, B., Shaikh, S., Kazmi, S. J. H., Waseem, L. A., Nasar-u-minAllah, M., & Abbas, N. (2019). Changing climatic factors favor dengue transmission in Lahore Pakistan. Environments, 6(6), 71.

    Article  Google Scholar 

  • Qureshi, J. A., Notta, N. J., Salahuddin, N., Zaman, V., & Khan, J. A. (1997). An epidemic of dengue fever in Karachi–associated clinical manifestations. Journal of Pakistan Medical Association, 47(7), 178.

    CAS  Google Scholar 

  • Rana, M. S., Alam, M. M., Salman, M., & Ikram, A. (2020). Prevention and control of escalating dengue epidemics in Pakistan. Journal of Medical Virology, 92(8), 927–928.

    Article  CAS  Google Scholar 

  • Riahi, K., Grübler, A., & Nakicenovic, N. (2007). Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74(7), 887–935.

    Article  Google Scholar 

  • Rueda, L. M., Patel, K. J., Axtell, R. C., & Stinner, R. E. (1990). Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 27(5), 892–898.

    Article  CAS  Google Scholar 

  • Ryan, S. J., Carlson, C. J., Mordecai, E. A., Johnson, L. R. (2019) Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Neglected Tropical Diseases, 13(3), e0007213.

  • Scott, T. W., Amerasinghe, P. H., Morrison, A. C., Lorenz, L. H., Clark, G. G., Strickman, D., & Edman, J. D. (2000). Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Blood feeding frequency. Journal of Medical Entomology, 37(1), 89–101.

    Article  CAS  Google Scholar 

  • Shabbir, W., Pilz, J., & Naeem, A. (2020). A spatial-temporal study for the spread of dengue depending on climate factors in Pakistan (2006–2017). BMC Public Health, 20(1), 1–10.

    Article  Google Scholar 

  • Siraj, A. S., Oidtman, R. J., Huber, J. H., Kraemer, M. U., Brady, O. J., Johansson, M. A., & Perkins, T. A. (2017). Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals. PLoS Neglected Tropical Diseases, 11(7), e0005797.

    Article  Google Scholar 

  • Tun-Lin, W., Burkot, T. R., & Kay, B. H. (2000). Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland Australia. Medical and Veterinary Entomology, 14(1), 31–37.

    Article  CAS  Google Scholar 

  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1), 5–31.

    Article  Google Scholar 

  • Watts, D. M., Burke, D. S., Harrison, B. A., Whitmire, R. E., & Nisalak, A. (1986). Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. ARMY MEDICAL RESEARCH INST OF INFECTIOUS DISEASES FORT DETRICK MD.

  • Wood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. (2004). Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189–216.

    Article  Google Scholar 

  • World Health Organization. (2012). Global strategy for dengue prevention and control 2012–2020.

  • World Health Organization (WHO), (2021). Dengue fever—Pakistan. Retrieved January, 16, 2022 from https://www.who.int/emergencies/disease-outbreak-news/item/dengue-fever-pakistan.

  • Wu, P. C., Lay, J. G., Guo, H. R., Lin, C. Y., Lung, S. C., & Su, H. J. (2009). Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Science of the Total Environment, 407(7), 2224–2233.

    Article  CAS  Google Scholar 

  • Yang, G., Pan, F., & Gan, W. B. (2009). Stably maintained dendritic spines are associated with lifelong memories. Nature, 462, 920–924.

Download references

Acknowledgements

This work is supported by the project of Asia-Pacific Network for Global Change Research (APN) titled “Towards robust projections of climate extremes and adaptation plans over South Asia: CRRP2018-04MY-Ali”. We also acknowledge the support of the Global Change Impact Studies Centre (GCISC), National Institute of Health (NIH), and Health Services Academy (HSA) Islamabad. We also acknowledge the support by Ratchadapisek Somphot Fund for Postdoctoral Fellowship, Chulalongkorn University Thailand.

Funding

All the funding of the project has been utilized during research work and currently we have no funds available.

Author information

Authors and Affiliations

Authors

Contributions

AS contributed to conceptualization; SA contributed to design methodology; FK did formal analysis; SM contributed to data curation and investigation; MSR and AWK contributed to writing—original draft; MAG and MAK contributed to writing—review and editing and visualization; AJ contributed to resources and writing—review and editing; RK contributed to resources and writing—review and editing; SP and AI contributed to writing—review and editing and supervision.

Corresponding author

Correspondence to Ramesh Kumar.

Ethics declarations

Competing Interest

The authors declare that they have no known competing interests.

Animal research

There is no ethical issue which may harm the ecosystem.

Consent to publish

All respondents the information has been shared and have consent obtained through email before submission of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, A., Ali, S., Khan, F. et al. Modelling the impact of climate change on dengue outbreaks and future spatiotemporal shift in Pakistan. Environ Geochem Health 45, 3489–3505 (2023). https://doi.org/10.1007/s10653-022-01429-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01429-z

Keywords

Navigation