Skip to main content

Advertisement

Log in

Spatial distribution of PM2.5-bound elements in eighteen cities over China: policy implication and health risk assessment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In this study, 30 elements in fine particulate matter (PM2.5) were measured in 18 Chinese cities in 2013. Elemental pollution in northern, southwest, and central China were severe, attributing to excessive coal and biomass combustion in these regions. The concentrations of S, Cl, and K in these areas were 8.21 ± 3.90, 4.03 ± 1.96, and 1.59 ± 0.613 μg/m3, respectively, which were 1.6–2.7 times higher than those in other regions of China. In addition, the industrial emissions in northeast and north China were large, leading to the elevated heavy metal concentration of 1.32 ± 1.17 μg/m3, especially Zn, Pb, Cr, Cd, and Br. Soil dust was the highest in northwest China among the five regions with the concentration of crustal elements of 6.37 ± 4.51 μg/m3. Moreover, although the levels of elemental concentration in east and southeast China were relatively acceptable, regulators must pay attention to elevated level of V (0.009 ± 0.006 μg/m3) in these areas. Compared with 2003, several elements have deteriorated in some cities. For example, As increased by 70%, 18%, and 155% in Changchun, Beijing, and Jinchang, respectively. However, ~ 77% measured elements, e.g., Ti, Fe, and Pb markedly reduced in 2013, with reduction rates of 13–81%. These indicate that the government’s policies related to particle-bound elements have shown certain positive environmental effects. For the health risks from the heavy metals in 2013, the non-cancer risks of As and Cd must not be neglected. The cancer risks of As and Pb were much higher than the international safety limit (10−4). More prominent health risks were found in southwest, central, and northwest China. Therefore, the government should accelerate the shift to cleaner energy in underdeveloped areas of China to obtain more environmental and health benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data involved in this study will be provided when they are asked from the corresponding authors.

References

  • An, Z. S., Huang, R. J., Zhang, R. Y., Tie, X. X., Li, G. H., Cao, J. J., et al. (2019). Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. PNAS, 116, 8657–8666.

    Article  CAS  Google Scholar 

  • Arditsoglou, A., & Samara, C. (2005). Levels of total suspended particulate matter and major trace elements in Kosovo: A source identification and apportionment study. Chemosphere, 59(5), 669–678.

    Article  CAS  Google Scholar 

  • Bennet, C. P., Jonsson, P., & Lindgren, E. S. (2005). Concentrations and sources of trace elements in particulate air pollution, Dar es Salaam, Tanzania, studied by EDXRF. X-Ray Spectrometry, 34(1), 1–6.

    Article  CAS  Google Scholar 

  • Cao, J. J., Shen, Z. X., Chow, J. C., Watson, J. G., Lee, S. C., Tie, X. X., et al. (2012). Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. Journal of the Air & Waste Management Association, 62(10), 1214–1226.

    Article  CAS  Google Scholar 

  • Cao, J. J., Xu, H. M., Xu, Q., Chen, B. H., & Kan, H. D. (2012). Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environmental Health Perspectives, 120(120), 373–378.

    Article  CAS  Google Scholar 

  • Chen, J. M., Tan, M. G., Li, Y. L., Zheng, J., Zhang, Y. M., Shan, Z. C., et al. (2008). Characteristics of trace elements and lead isotope ratios in PM2.5 from four sites in Shanghai. Journal of Hazardous Materials, 156(1–3), 36–43.

    Article  CAS  Google Scholar 

  • Cheng, S. P. (2003). Heavy metal pollution in China: Origin, pattern and control. Environmental Science and Pollution Research, 10(3), 192–198.

    Article  CAS  Google Scholar 

  • Cheng, Y., Lee, S. C., Gu, Z. L., Ho, K. F., Zhang, Y. W., Huang, Y., et al. (2015). PM2.5 and PM10–2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology, 18(1), 96–104 (in Chinese).

    Article  CAS  Google Scholar 

  • Couto, C. M. C. M., Ribeiro, C., Ribeiro, A. R., Maia, A., Santos, M., Tiritan, M. E., et al. (2019). Spatiotemporal distribution and sources of trace elements in ave River (Portugal) lower basin: Estuarine water, sediments and indigenous flora. International Journal of Environmental Research, 13, 303–318.

    Article  CAS  Google Scholar 

  • Feng, Y. C., Xue, Y. H., Chen, X. H., Wu, J. H., Zhu, T., Bai, Z. P., et al. (2007). Sourceapportionmentof ambient total suspended particulates and coarse particulatematter inurban areas of Jiaozuo, China. Journal of the Air & Waste Management Association, 57(5), 561–575.

    Article  CAS  Google Scholar 

  • Ferreira-Baptista, L., & Miguel, D. E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39(25), 4501–4512.

    Article  CAS  Google Scholar 

  • Gao, L. F., Liu, G. J., Chou, C. L., Zheng, L. G., & Zheng, W. (2005). The study of sulfur Geochemistry in Chinese Coals. Bulletin of Mineralogy, Petrology and Geochemistry, 24(1), 79–87.

    CAS  Google Scholar 

  • Gautam, S., Patra, A. K., & Kumar, P. (2018). Status and chemical characteristics of ambient PM2.5 pollutions in China: A review. Environment, Development and Sustainability, 21, 1649–1674.

    Article  Google Scholar 

  • Geng, N. B., Wang, J., Xu, Y. F., Zhang, W. D., Chen, C., & Zhang, R. Q. (2013). PM2.5 in an industrial district of Zhengzhou, China: Chemical composition and source apportionment. Particuology, 11(1), 99–109 (in Chinese).

    Article  CAS  Google Scholar 

  • Hagler, G. S. W., Bergin, M. H., Salmon, L. G., Yu, J. Z., Wan, E. C. H., Zheng, M., Zeng, L. M., Kiang, C. S., Zhang, Y. H., & Schauer, J. J. (2007). Local and regional anthropogenic influence on PM2.5 elements in Hong Kong. Atmospheric Environment, 41(28), 5994–6004.

    Article  CAS  Google Scholar 

  • Hao, Y. C., Guo, Z. G., Yang, Z. S., Fang, M., & Feng, J. L. (2007). Seasonal variations and sources of various elements in the atmospheric aerosols in Qingdao, China. Atmospheric Research, 85(1), 27–37.

    Article  CAS  Google Scholar 

  • He, B., Liang, L., & Jiang, G. B. (2002). Distributions of arsenic and selenium in selected Chinese coal mines. Science of the Total Environment, 296(1–3), 19–26.

    Article  CAS  Google Scholar 

  • He, K. B., Yang, F. M., Ma, Y. L., Zhang, Q., Yao, X. H., Chan, C. K., et al. (2001). The characteristics of PM2.5 in Beijing, China. Atmospheric Environment, 35(29), 4959–4970.

    Article  CAS  Google Scholar 

  • He, L. Y., Hu, M., Zhang, Y. H., Huang, X. F., & Yao, T. T. (2008). Fine particle emissions from On-road vehicles in the Zhujiang Tunnel, China. Environmental Science & Technology, 42(12), 4461–4466.

    Article  CAS  Google Scholar 

  • Hu, X., Zhang, Y., Ding, Z. H., Wang, T. J., Lian, H. Z., Sun, Y. Y., et al. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric Environment, 57, 146–152.

    Article  CAS  Google Scholar 

  • Huang, R. J., Cheng, R., Jing, M., Yang, L., Li, Y., Chen, Q., Chen, Y., et al. (2018). Source-specific health risk analysis on particulate trace elements: Coal combustion and traffic emission as major contributors in wintertime Beijing. Environmental Science & Technology, 52, 10967–10974.

    Article  CAS  Google Scholar 

  • Hwang, S. L., Chi, M. C., Guo, S. E., Lin, Y. C., Chou, C. T., & Lin, C. M. (2018). Seasonal variation and source apportionment of PM2.5-bound trace elements at a coastal area in southwestern Taiwan. Environmental Science and Pollution Research, 25, 9101–9113.

    Article  CAS  Google Scholar 

  • Jiang, H. M., Liu, C. Y., & Gong, H. R. (2014). Variation features of precipitation in Urumqi region in recent 40 years. Journal of Anhui Agricultural Sciences, 42, 12215–12218 (in Chinese).

    Google Scholar 

  • Khodeir, M., Shamy, M., Alghamdi, M., Zhong, M. H., Sun, H., Costa, M., et al. (2012). Source Apportionment and elemental composition of PM2.5 and PM10 in Jeddah city, Saudi Arabia. Atmospheric Pollution Research, 3(3), 331–340.

    Article  CAS  Google Scholar 

  • Kong, S. F., Lu, B., Ji, Y. Q., Zhao, X. Y., Bai, Z. P., Xu, Y. H., et al. (2012). Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying city, Shandong Province, China. Journal of Environmental Monitoring, 14(3), 791–803.

    Article  CAS  Google Scholar 

  • Kurt-Karakus, P. B. (2012). Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environment International, 50, 47–55.

    Article  CAS  Google Scholar 

  • Li, H. M., Wang, Q. G., Yang, M., Li, F. Y., Wang, J. H., Sun, Y. X., et al. (2016). Chemical characterization and source apportionment of PM2.5 aerosols in a megacity of Southeast China. Atmospheric Research, 181, 288–299.

    Article  CAS  Google Scholar 

  • Li, T., Wang, Y., Li, W. J., Chen, J. M., Wang, T., & Wang, W. X. (2015). Concentrations and solubility of trace elements in fine particles at a mountain site, southern China: Regional sources and cloud processing. Atmospheric Chemistry and Physics, 15, 8987–9002.

    Article  CAS  Google Scholar 

  • Li, Y. P., Zhang, Z. S., Liu, H. F., Zhou, H., Fan, Z. Y., Lin, M., et al. (2016). Characteristics, sources and health risk assessment of toxic heavy metals in PM2.5 at a megacity of southwest China. Environmental Geochemistry and Health, 38(2), 353–362.

    Article  CAS  Google Scholar 

  • Liu, G., Li, J. H., Wu, D., & Xu, H. (2015). Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China. Particuology, 18(1), 135–143 (in Chinese).

    Article  CAS  Google Scholar 

  • Liu, Y. Y., Xing, J., Wang, S., Fu, X., & Zheng, H. T. (2018). Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environmental Pollution, 239, 544–553.

    Article  CAS  Google Scholar 

  • Lv, W. W., Wang, Y. X., Querol, X., Zhuang, X. G., Alastuey, A., López, A., et al. (2006). Geochemical and statistical analysis of trace metals in atmospheric particulates in Wuhan, central China. Environmental Geology, 51(1), 121–132.

    Article  CAS  Google Scholar 

  • Massimi, L., Simonetti, G., Buiarelli, F., Filippo, P. D., Pomata, D., Riccardi, C., et al. (2020). Spatial distribution of levoglucosan and alternative biomass burning tracers in atmospheric aerosols, in an urban and industrial hot-spot of Central Italy. Atmospheric Research, 239, 104904.

    Article  CAS  Google Scholar 

  • Okorie, A., Entwistle, J., & Dean, J. R. (2012). Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere, 86(5), 460–467.

    Article  CAS  Google Scholar 

  • Onat, B., Sahin, U. A., & Akyuz, T. (2013). Elemental characterization of PM2.5 and PM1 in dense traffic area in Istanbul, Turkey. Atmospheric Pollution Research, 4(1), 101–105.

    Article  CAS  Google Scholar 

  • Polidori, A., Cheung, K. L., Arhami, M., Delfino, R. J., Schauer, J. J., & Sioutas, C. (2009). Relationships between size-fractionated indoor and outdoor trace elements at four retirement communities in southern California. Atmospheric Chemistry and PhysicsDiscuss, 9, 4931–4969.

    Google Scholar 

  • Qiu, X. H., Duan, L., Gao, J., Wang, S. L., Chai, F. H., Hu, J., et al. (2016). Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China. Journal of Environmental Sciences, 40(2), 75–83.

    Article  CAS  Google Scholar 

  • Shi, Z. H., Li, J. Y., Huang, L., Wang, P., Wu, L., Ying, Q., et al. (2017). Source apportionment of fine particulate matter in China in 2013 using a source-oriented chemical transport model. Science of the Total Environment, 601–602, 1476–1487.

    Article  CAS  Google Scholar 

  • Sia, S.-G., & Abdullah, W. H. (2015). Mercury and chlorine in the Balingian Coal from Sarawak, Malaysia. Natural Resources Research, 24(2), 197–207.

    Article  CAS  Google Scholar 

  • Sun, J., Shen, Z. X., Zhang, Y., Zhang, Q., Wang, F. R., Wang, T., et al. (2019). Effects of biomass briquetting and carbonization on PM2.5 emission from residential burning in Guanzhong Plain, China. Fuel, 244, 379–387.

    Article  CAS  Google Scholar 

  • Sun, Y. Y., Hu, X., Wu, J. C., Lian, H. G., & Chen, Y. J. (2014). Fractionation and health risks of atmospheric particle-bound As and heavy metals in summer and winter. Science of the Total Environment, 493, 487–494.

    Article  CAS  Google Scholar 

  • Tan, J. H., & Duan, J. C. (2013). Heavy metals in aerosol in China: Pollution, sources, and control strategies. Journal of Graduate University of Chinese Academy of Sciences, 30, 145–155 (in Chinese).

    Google Scholar 

  • Tao, J., Cheng, T. T., Zhang, R. J., Cao, J. J., Zhu, L. H., Wang, Q. Y., et al. (2013). Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China. Advances in Atmospheric Sciences, 30(4), 1070–1084.

    Article  CAS  Google Scholar 

  • Teng, S. C., Zhao, M. R., Zhai, C., Yin, Y. C., & Wang, S. Y. (2010). Climate analysis in recent 50 years in Jinchang of Gansu Province. Journal of Arid Meteorology, 28(4), 411–417 (in Chinese).

    Google Scholar 

  • Tian, H. Z., Wang, Y., Xue, Z. G., Qu, Y. P., Chai, F. H., & Hao, J. M. (2011). Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007. Science of the Total Environment, 409, 3078–3081.

    Article  CAS  Google Scholar 

  • Tran, D. T., Alleman, L. Y., Coddeville, P., & Galloo, J.-C. (2012). Elemental characterization and source identification of size resolved atmospheric particles in French classrooms. Atmospheric Environment, 54, 250–259.

    Article  CAS  Google Scholar 

  • Tsai, J., Owega, S., Evans, G., Jervis, R., Fila, M., Tan, P., et al. (2004). Chemical composition and source apportionment of Toronto summertime urban fine aerosol (PM2.5). Journal of Radioanalytical and Nuclear Chemistry, 259(1), 193–197.

    Article  CAS  Google Scholar 

  • USEPA (1989). Risk assessment guidance for superfund volume I human health evaluation manual (part A). EPA/540/1-89/002 December. http://www.epa.gov/swerrims/riskassessment/ragsa/index.htm.

  • USEPA (2009). Risk Assessment Guidance for Superfund (RAGS), Volume I: Human health evaluation manual (Part F, Supplemental guidance for inhalation risk assessment) EPA-540-R-070-002, OSWER 9285.7-82, January. http://www.epa.gov/swerrims/riskassessment/ragsf/index.htm

  • Vassilev, S. V., Eskenazy, G. M., & Vassileva, C. G. (2000). Contents, modes of occurrence and behaviour of chlorine and bromine in combustion wastes from coal-fired power stations. Fuel, 79(8), 923–938.

    Article  CAS  Google Scholar 

  • Wang, X. H., Bi, X. H., Sheng, G. Y., & Fu, J. M. (2006a). Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environmental Monitoring and Assessment, 119(1/3), 425–439.

    Article  CAS  Google Scholar 

  • Wang, X. H., Bi, X. H., Sheng, G., & Fu, J. M. (2006b). Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China. Science of the Total Environment, 366(1), 124–135.

    Article  CAS  Google Scholar 

  • Wang, Y. N., Jia, C. H., Tao, J., Zhang, L. M., Liang, X. X., Ma, J. M., et al. (2016). Chemical characterization and source apportionment of PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest China. Science of the Total Environment, 573, 1031–1040.

    Article  CAS  Google Scholar 

  • Wang, Z. Q., & Liu, J. J. (2018). Spring-time PM2.5 elemental analysis and polycyclic aromatic hydrocarbons measurement in High-rise residential buildings in Chongqing and Xian, China. Energy and Buildings, 173, 623–633.

    Article  Google Scholar 

  • Watson, J. G., Chow, J. C., & Frazier, C. A. (1999). X-ray fluorescence analysis of ambient air samples. . Gordon and Breach Science publishers.

    Google Scholar 

  • Wei, Y. (2010). Causes and countermeasures of air pollution in Urumqi. Journal of Arid Land Resources Environment, 24(9), 68–71 (in Chinese).

    Google Scholar 

  • Xu, H. M., Li, Y. Q., Guinot, B., Wang, J. H., He, K. L., Ho, K. F., et al. (2018). Personal exposure of PM2.5 emitted from solid fuels combustion for household heating and cooking in rural Guanzhong Plain, northwestern China. Atmospheric Environment, 185, 196–206.

    Article  CAS  Google Scholar 

  • Yan, Y. L., He, Q. S., Guo, L. L., Li, H. Y., Zhang, H. F., Shao, M., et al. (2017). Source apportionment and toxicity of atmospheric polycyclic aromatic hydrocarbons by PMF: Quantifying the influence of coal usage in Taiyuan, China. Atmospheric Research, 193, 50–59.

    Article  CAS  Google Scholar 

  • Yao, D. X., & Zhi, X. C. (2010). The transformation and concentration of environmental hazardous trace elements during coal combustion. Journal of Coal Science Engineering, 16(1), 74–77.

    Article  Google Scholar 

  • Ying, Q., Feng, M., Song, D. L., Wu, L., Hu, J. L., Zhang, H. L., et al. (2018). Improve regional distribution and source apportionment of PM2.5 trace elements in China using inventory-observation constrained emission factors. Science of the Total Environment, 624, 355–365.

    Article  CAS  Google Scholar 

  • Zaizen, Y. J., Naoe, H., Takahashi, H., & Igarashi, Y. (2014). Number concentrations and elemental compositions of aerosol particles observed at Mt. Kiso-Komagatake in central Japan, 2010–2013. Atmospheric Environment, 90, 1–9.

    Article  CAS  Google Scholar 

  • Zang, X. H., Lu, Y. T., Yao, H., Li, F. D., & Zhang, S. C. (2015). The temporal and spatial distribution characteristics of main air pollutants in China. Ecology & Environmental Sciences, 24, 1322–1329 (in Chinese).

    Google Scholar 

  • Zhang, F., Chen, Y. J., Tian, C. G., Wang, X. P., Huang, G. P., Fang, Y., et al. (2014). Identification and quantification of shipping emissions in Bohai Rim, China. Science of the Total Environment, 497–498, 570–577.

    Article  CAS  Google Scholar 

  • Zhang, F., Wang, Z. W., Cheng, H. R., Lv, X. P., Gong, W., Wang, X. M., et al. (2015). Seasonal variations and chemical characteristics of PM(2.5) in Wuhan, central China. Science of the Total Environment, 518–519, 97–105.

    Google Scholar 

  • Zhang, J. Z., Zhou, X. H., Wang, Z., Yang, L. X., Wang, J., & Wang, W. X. (2018). Trace elements in PM2.5 in Shandong Province: Source identification and health risk assessment. Science of the Total Environment, 621, 558–577.

    Article  CAS  Google Scholar 

  • Zhang, Q., & Crooks, R. (2012). Toward an environmentally sustainable future: Country environmental analysis of the People’s Republic of China. Asian Development Bank.

  • Zhang, R., Cao, J. J., Tang, Y. R., Arimoto, R., Shen, Z. X., Wu, F., et al. (2014). Elemental profiles and signatures of fugitive dusts from Chinese deserts. Science of the Total Environment, 472, 1121–1129.

    Article  CAS  Google Scholar 

  • Zhang, R. H., Li, Q., & Zhang, R. N. (2013). Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Science China Earth Sciences, 057(1), 26–35.

    Google Scholar 

  • Zhang, Y. J., Cai, J., Wang, S. X., He, K. B., & Zheng, M. (2017). Review of receptor-based source apportionment research of fine particulate matter and its challenges in China. Science of the Total Environment, 586, 917–929.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., Wang, Z. F., Luo, K. L., Ding, M. J., Zhang, W., Lin, X. D., et al. (2007). The spatial distribution of trace elements in topsoil from the northern slope of Qomolangma (Everest) in China. Environmental Geology, 52(4), 679–684.

    Article  CAS  Google Scholar 

  • Zhao, B., & Ma, J. Z. (2007). The research of air pollution source emission for the north China. China Academy of Meteorological Sciences (in Chinese).

  • Zhao, M. J., Yan, Z., Ma, W. C., Fu, Q. Y., Xin, Y., Li, C. L., et al. (2013). Characteristics and ship traffic source identification of air pollutants in China’s largest port. Atmospheric Environment, 64, 277–286.

    Article  CAS  Google Scholar 

  • Zheng, J., Hu, M., Peng, J. F., Wu, Z. J., Kumar, P., Li, M. R., et al. (2016). Spatial distributions and chemical properties of PM2.5 based on 21 field campaigns at 17 sites in China. Chemosphere, 159, 480–487.

    Article  CAS  Google Scholar 

  • Zheng, J. F., & Sun, H. (2015). Analysis of characteristics of precipitation in Yulin area of Shaanxi Province. Acta AgricuturaeJiangxi, 27(4), 94–98.

    Google Scholar 

  • Zhu, Y. H., Huang, L., Li, J. Y., Ying, Q., Zhang, H. L., Liu, X. G., et al. (2018). Sources of particulate matter in China: Insights from source apportionment studies published in 1987–2017. Environment International, 115, 343–357.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the projects from the National Research Program for Key Issues in Air Pollution Control (DQGG0105), the Key Research and Development Program of Shaanxi Province (2018-ZDXM3-01, 2018ZDCXL-SF-02-05), and the National Natural Science Foundation of China (41673125).

Author information

Authors and Affiliations

Authors

Contributions

Junji Cao and Hongmei Xu conceived and designed the study. Minxia Shen contributed to the literature search, data analysis and interpretation, and manuscript writing. Hongmei Xu, Junji Cao, Ningning Zhang, Judith C. Chow, and John G. Watson contributed to manuscript revision. Suixin Liu, Yong Zhang, and Jiamao Zhou carried out the particulate samples and chemical experiments, analyzed the experimental data. All authors commented on the manuscript and reviewed the manuscript.

Corresponding authors

Correspondence to Hongmei Xu or Junji Cao.

Ethics declarations

Ethical standard

In this work, no any animal and human experiments were involved. Thus, it is not applicable of Consent to participate and consent to publish before reference.

Conflict of interest

The authors declare they have no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 62 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M., Xu, H., Liu, S. et al. Spatial distribution of PM2.5-bound elements in eighteen cities over China: policy implication and health risk assessment. Environ Geochem Health 43, 4771–4788 (2021). https://doi.org/10.1007/s10653-021-00913-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00913-2

Keywords

Navigation