Skip to main content

Advertisement

Log in

Geochemical pollution of trace metals in permafrost-affected soil in the Russian Arctic marginal environment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The Arctic marginal environment has been considered as far from industrial areas and low population. During June–July of 2016 “Russian High Latitude” expedition, 93 samples of soil genetic horizon from 25 soil profiles dug till frozen ground were sampled from 8 islands and 2 capes of the Russian Arctic without direct anthropogenic influences. Nine trace metals (Pb, Cd, Cu, Ni, Co, Zn, Fe, Mn and Hg) were measured and quantified by energy-dispersive X-ray analysis for elemental concentrations. Through analysis of divided soil groups (Haplothels, Turbels, Historthels), the factors of organic matter and cryoturbation had a significant influence on metals’ distribution except for Fe and Mn. From summarized soil master horizons (O, A, B, C), Fe and Mn are abundant in all horizons suggesting as geochemical background values. Cu, Pb, Co and Ni are distributed specifically in different horizons with leaching and accumulation process, whereas Hg is evenly disturbed in all horizons. The correlation analysis reveals that distribution of most metals in present soils is highly depended on soil properties (pH, TOC, clay and silt). Li was selected as normalizing element for metals’ concentrations from mineral layers to establish geochemical baseline concentrations. The concentrations of trace metals have been assessed by geoaccumulation index (Igeo) and enrichment factor, showing only Co and Zn are moderately polluted and slightly polluted, and Co, Cu, Zn and Pb are enriched in topsoil. Other indices as modified degree of contamination (mCdegree) and pollution load index (PLI), mCdegree show moderate degree of pollution and PLI shows unpolluted to moderate pollution load. The ecological risk indices, e.g., ecological risk factor (Er) and potential ecological risk index, show low ecological risk potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abakumov, E., Shamilishviliy, G., & Yurtaev, A. (2017). Soil polychemical contamination on Beliy Island as key background and reference plot for Yamal region. Polish Polar Research, 38(3), 313–332. https://doi.org/10.1515/popore-2017-0020.

    Article  Google Scholar 

  • Abrahim, G. (2019). Holocene sediments of Tamaki Estuary: Characterisation and impact of recent human activity on an urban estuary in Auckland, New Zealand.

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1), 227–238. https://doi.org/10.1007/s10661-007-9678-2.

    Article  CAS  Google Scholar 

  • Adama, M., Esena, R., Fosu-Mensah, B., & Yirenya-Tawiah, D. (2016). Heavy metal contamination of soils around a hospital waste incinerator bottom ash dumps site. Journal of Environmental and Public Health. https://doi.org/10.1155/2016/8926453.

    Article  Google Scholar 

  • Ahdy, H. H. H., & Khaled, A. (2009). Heavy metals contamination in sediments of the western part of Egyptian Mediterranean Sea. Australian Journal of Basic and Applied Sciences, 3(4), 3330–3336.

    CAS  Google Scholar 

  • Ainsworth, C. C., Gassman, P. L., Pilon, J. L., & Van Der Sluys, W. G. (1994). Cobalt, cadmium, and lead sorption to hydrous iron oxide: Residence time effect. Soil Science Society of America Journal, 58, 1615–1623. https://doi.org/10.2136/sssaj1994.03615995005800060005x.

    Article  CAS  Google Scholar 

  • Akoto, O., Nimako, C., Asante, J., & Bailey, D. (2016). Heavy metals enrichment in surface soil from abandoned waste disposal sites in a hot and wet tropical area. Environmental Processes, 3(4), 747–761. https://doi.org/10.1007/s40710-016-0183-x.

    Article  CAS  Google Scholar 

  • Almasoud, F. I., Usman, A. R., & Al-Farraj, A. S. (2015). Heavy metals in the soils of the Arabian Gulf coast affected by industrial activities: Analysis and assessment using enrichment factor and multivariate analysis. Arabian Journal of Geosciences, 8(3), 1691–1703. https://doi.org/10.1007/s12517-014-1298-x.

    Article  CAS  Google Scholar 

  • Aloupi, M., & Angelidis, M. O. (2001). Normalization to lithium for the assessment of metal contamination in coastal sediment cores from the Aegean Sea, Greece. Marine Environmental Research, 52(1), 1–12. https://doi.org/10.1016/s0141-1136(00)00255-5.

    Article  CAS  Google Scholar 

  • AMAP. (2005). Heavy metals in the Arctic. Oslo: Rctic Monitoring and Assessment Programme.

  • Angehrnbettinazzi, C., Thoni, L., & Hertz, J. (1989). An attempt to evaluate some factors affecting the heavy metals–metal accumulation in a forest sand. International Journal of Environmental Analytical Chemistry, 35(2), 69–79. https://doi.org/10.1080/03067318908028380.

    Article  CAS  Google Scholar 

  • Angulo, E. (1996). The Tomlinson Pollution Load Index applied to heavy metal, ‘Mussel-Watch’ data: A useful index to assess coastal pollution. Science of the Total Environment, 187(1), 19–56. https://doi.org/10.1016/0048-9697(96)05128-5.

    Article  CAS  Google Scholar 

  • Antcibor, I., Eschenbach, A., Zubrzycki, S., Kutzbach, L., Bolshiyanov, D., & Pfeiffer, E. M. (2014). Trace metal distribution in pristine permafrost-affected soils of the Lena River delta and its hinterland, northern Siberia, Russia. Biogeosciences, 11(1), 1–15. https://doi.org/10.5194/bg-11-1-2014.

    Article  CAS  Google Scholar 

  • Bächmann, K., Steigerwald, K., & Klenk, H. (1992). Development of a method for direct determination of solids as thin films by energy dispersive X-ray fluorescence analysis. Microchimica Acta, 108(3), 299–302. https://doi.org/10.1007/BF01242440.

    Article  Google Scholar 

  • Barker, A. J., Douglas, T. A., Jacobson, A. D., McClelland, J. W., Ilgen, A. G., Khosh, M. S., et al. (2014). Late season mobilization of trace metals in two small Alaskan arctic watersheds as a proxy for landscape scale permafrost active layer dynamics. Chemical Geology, 381, 180–193. https://doi.org/10.1016/j.chemgeo.2014.05.012.

    Article  CAS  Google Scholar 

  • Bhuiyan, M. A. H., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173(1–3), 384–392. https://doi.org/10.1016/j.jhazmat.2009.08.085.

    Article  CAS  Google Scholar 

  • Boyd, R., Barnes, S. J., De Caritat, P., Chekushin, V. A., Melezhik, V. A., Reimann, C., et al. (2009). Emissions from the copper–nickel industry on the Kola Peninsula and at Noril’sk, Russia. Atmospheric Environment, 43(7), 1474–1480. https://doi.org/10.1016/j.atmosenv.2008.12.003.

    Article  CAS  Google Scholar 

  • Bradl, H. (2005). Heavy metals in the environment: Origin, interaction and remediation (Vol. 6, p. 282). Academic Press.

  • Buchkina, N. P., Zuyev, V. S., & Balashov, E. V. (1998). Effects of tracked vehicles on the morphological and physical properties of tundra soils. Soil and Tillage Research, 48(4), 317–324. https://doi.org/10.1016/s0167-1987(98)00158-5.

    Article  Google Scholar 

  • Christiansen, H. H., Etzelmüller, B., Isaksen, K., Juliussen, H., Farbrot, H., Humlum, O., et al. (2010). The thermal state of permafrost in the nordic area during the international polar year 2007–2009. Permafrost and Periglacial Processes, 21(2), 156–181. https://doi.org/10.1002/ppp.687.

    Article  Google Scholar 

  • Covelli, S., & Fontolan, G. (1997). Application of a normalization procedure in determining regional geochemical baselines. Environmental Geology, 30(1), 34–45. https://doi.org/10.1007/s002540050130.

    Article  CAS  Google Scholar 

  • DINISO10390. (2005). Soil quality: Determination of pH (DIN ISO 10390:2005).

  • Dube, A., Zbytniewski, R., Kowalkowski, T., Cukrowska, E., & Buszewski, B. (2001). Adsorption and migration of heavy metals in soil. Polish Journal of Environmental Studies, 10(1), 1–10.

    CAS  Google Scholar 

  • Ejarque, E., & Abakumov, E. (2016). Stability and biodegradability of organic matter from Arctic soils of Western Siberia: Insights from C-13-NMR spectroscopy and elemental analysis. Solid Earth, 7(1), 153–165. https://doi.org/10.5194/se-7-153-2016.

    Article  Google Scholar 

  • Fischwasser, K. (1990). Environmental inorganic chemistry—properties, processes, and estimation methods. Edited by I. Bodek; W. Lyman; W. F. Reehl and D. H. Rosenblatt.—NEw York/Oxford/Beijing/Frankfurt/Sao Paulo/Sydney/Tokyo/Toronto: Pergamon Press 1988. ISBN 0-08-036833-6, $ 150.00. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 75(5), 681-681, https://doi.org/10.1002/iroh.19900750509.

  • Frank, R., Ishida, K., & Suda, P. (1976). Metals in agricultural soils of Ontario. Canadian Journal of Soil Science, 56(3), 181–196. https://doi.org/10.4141/cjss76-027.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution-control—A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Halbach, K., Mikkelsen, O., Berg, T., & Steinnes, E. (2017). The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere, 188, 567–574. https://doi.org/10.1016/j.chemosphere.2017.09.012.

    Article  CAS  Google Scholar 

  • Hofle, S., Rethemeyer, J., Mueller, C. W., & John, S. (2013). Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta. Biogeosciences, 10(5), 3145–3158. https://doi.org/10.5194/bg-10-3145-2013.

    Article  CAS  Google Scholar 

  • Ives, M., Lewis, D. B., & Lehmberg, C. (1997). Depth profile analysis of multilayer Ni–Fe alloy coatings by glow discharge optical emission spectroscopy (GDOES) and energy dispersive X-ray (EDX) linescan—A comparative study. Surface and Interface Analysis, 25(3), 191–201. https://doi.org/10.1002/(sici)1096-9918(199703)25:3%3c191:Aid-sia218%3e3.3.Co;2-2.

    Article  CAS  Google Scholar 

  • Jaffe, D., Cerundolo, B., Rickers, J., Stolzberg, R., & Baklanov, A. (1995). Deposition of sulfate and heavy-metals on the Kola–Peninsula. Science of the Total Environment, 160–61, 127–134. https://doi.org/10.1016/0048-9697(95)04350-a.

    Article  Google Scholar 

  • Ji, X., Abakumov, E., Antcibor, I., Tomashunas, V., Knoblauch, C., Zubzycki, S., et al. (2019a). Influence of anthropogenic activities on metals in arctic permafrost: A characterization of benchmark soils on the Yamal and Gydan Peninsulas in Russia. Archives of Environmental Contamination and Toxicology, 76(4), 540–553. https://doi.org/10.1007/s00244-019-00607-y.

    Article  CAS  Google Scholar 

  • Ji, X., Abakumov, E., & Polyakov, V. (2019b). Assessments of pollution status and human health risk of heavy metals in permafrost-affected soils and lichens: A case-study in Yamal Peninsula, Russia Arctic AU—Ji, Xiaowen. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2018.1490887.

    Article  Google Scholar 

  • Jiang, D. Z., Teng, E. J., & Liu, Y. L. (1996). The contribution of difference on the element background values in soils and the analysis of variance of single factor on soil groups. Environmental Monitoring China, 2, 21–24.

    Google Scholar 

  • Johnson, D. L., Domier, J. E. J., & Johnson, D. N. (2005). Reflections on the nature of soil and its biomantle. Annals of the Association of American Geographers, 95(1), 11–31. https://doi.org/10.1111/j.1467-8306.2005.00448.x.

    Article  Google Scholar 

  • Kashulina, G. M. (2017). Extreme pollution of soils by emissions of the copper–nickel industrial complex in the Kola Peninsula. Eurasian Soil Science, 50(7), 837–849. https://doi.org/10.1134/S1064229317070031.

    Article  CAS  Google Scholar 

  • Katsoyiannis, A., Sweetman, A. J., & Jones, K. C. (2011). PAH molecular diagnostic ratios applied to atmospheric sources: A critical evaluation using two decades of source inventory and air concentration data from the UK. Environmental Science and Technology, 45(20), 8897–8906. https://doi.org/10.1021/es202277u.

    Article  CAS  Google Scholar 

  • Kitagishi, K., & Yamane, I. (1981). Heavy metal pollution in soils of Japan. Tokyo: Japan Scientific Societies Press.

    Google Scholar 

  • Kosko, M. K., Cecile, M. P., Harrison, J. C., Ganelin, V. G., Khandoshko, N. V., & Lopatin, B. G. (1993). Geology of Wrangel Island, between Chukchi and east Siberian seas, northeastern Russia. Bulletin 461, Geological Survey of Canada, Ottawa Ontario, 101.

  • Kozlov, M. V., & Barcan, V. (2000). Environmental contamination in the central part of the Kola Peninsula: History, documentation, and perception. AMBIO A Journal of the Human Environment, 29(8), 512–517.

    Article  Google Scholar 

  • Krasilnikov, P., Marti, J.-J. I., Arnold, R., & Shoba, S. (2009). A handbook of soil terminology, correlation and classification. London: Earthscan.

    Book  Google Scholar 

  • Liaghati, T., Preda, M., & Cox, M. (2004). Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland. Australia. Environment International, 29(7), 935–948. https://doi.org/10.1016/s0160-4120(03)00060-6.

    Article  CAS  Google Scholar 

  • Likuku, A. S., Mmolawa, K. B., & Gaboutloeloe, G. K. (2013). Assessment of heavy metal enrichment and degree of contamination around the copper–nickel mine in the Selebi Phikwe Region, Eastern Botswana. Environment and Ecology Research, 1(2), 32–40. https://doi.org/10.13189/eer.2013.010202.

    Article  CAS  Google Scholar 

  • Loska, K., Wiechuła, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30(2), 159–165. https://doi.org/10.1016/S0160-4120(03)00157-0.

    Article  CAS  Google Scholar 

  • Lukina, N., & Nikonov, V. (2001). Assessment of environmental impact zones in the Kola Peninsula forest ecosystems. Chemosphere, 42(1), 19–34.

    Article  CAS  Google Scholar 

  • Machender, G., Dhakate, R., Prasanna, L., & Govil, P. K. (2011). Assessment of heavy metal contamination in soils around Balanagar industrial area, Hyderabad, India. Environmental Earth Sciences, 63(5), 945–953. https://doi.org/10.1007/s12665-010-0763-4.

    Article  CAS  Google Scholar 

  • Manna, A., & Maiti, R. (2018). Geochemical contamination in the mine affected soil of Raniganj Coalfield—A river basin scale assessment. Geoscience Frontiers, 9(5), 1577–1590. https://doi.org/10.1016/j.gsf.2017.10.011.

    Article  CAS  Google Scholar 

  • Marques, M., Sierra, J., Drotikova, T., Mari, M., Nadal, M., & Domingo, J. L. (2017). Concentrations of polycyclic aromatic hydrocarbons and trace elements in Arctic soils: A case-study in Svalbard. Environmental Research, 159, 202–211. https://doi.org/10.1016/j.envres.2017.08.003.

    Article  CAS  Google Scholar 

  • McNeal, J. M., & Rose, A. W. (1974). The geochemistry of mercury in sedimentary rocks and soils in Pennsylvania. Geochimica et Cosmochimica Acta, 38(12), 1759–1784. https://doi.org/10.1016/0016-7037(74)90160-4.

    Article  CAS  Google Scholar 

  • Meharg, A. A. (2011). Trace elements in soils and plants. 4th edition. By Kabata-Pendias A. Boca Raton, FL, USA: CRC Press/Taylor & Francis Group (2010), pp. 548. Experimental Agriculture, 47(4), 739–739, https://doi.org/10.1017/s0014479711000743.

  • Meier, M. M. M., Cloquet, C., & Marty, B. (2016). Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation. Geochimica et Cosmochimica Acta, 182, 55–72. https://doi.org/10.1016/j.gca.2016.03.007.

    Article  CAS  Google Scholar 

  • Moskovchenko, D. V. (2013). Ecogeochemistry of oil and gas development areas of West Siberia. Novosibirsk: Geo. (in Russian).

    Google Scholar 

  • Moskovchenko, D. V., Kurchatova, A. N., Fefilov, N. N., & Yurtaev, A. A. (2017). Concentrations of trace elements and iron in the Arctic soils of Belyi Island (the Kara Sea, Russia): Patterns of variation across landscapes. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-017-5928-0.

  • Mugoša, B., Đurović, D., Nedović-Vuković, M., Barjaktarović-Labović, S., & Vrvić, M. (2016). Assessment of Ecological Risk of Heavy Metal Contamination in Coastal Municipalities of Montenegro. International Journal of Environmental Research and Public Health, 13(4), 393.

    Article  Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in sediments of the rhine river. Geojournal, 2, 108–118.

    Google Scholar 

  • Muskett, R. R., & Romanovsky, V. E. (2011). Alaskan permafrost groundwater storage changes derived from GRACE and ground measurements. Remote Sensing, 3(2), 378–397. https://doi.org/10.3390/rs3020378.

    Article  Google Scholar 

  • Niskavaara, H., Reimann, C., Chekushin, V., & Kashulina, G. (1997). Seasonal variability of total and easily leachable element contents in topsoils (0–5 cm) from eight catchments in the European Arctic (Finland, Norway and Russia). Environmental Pollution, 96(2), 261–274. https://doi.org/10.1016/s0269-7491(97)00031-6.

    Article  CAS  Google Scholar 

  • Pacyna, J. M. (1995). The origin of Arctic air-pollutants—Lessons learned and future-research. Science of the Total Environment, 160–61, 39–53. https://doi.org/10.1016/0048-9697(95)04343-y.

    Article  Google Scholar 

  • Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., et al. (2010). Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 44(20), 2487–2499. https://doi.org/10.1016/j.atmosenv.2009.06.009.

    Article  CAS  Google Scholar 

  • Patton, A. I., Rathburn, S. L., & Capps, D. M. (2019). Landslide response to climate change in permafrost regions. Geomorphology, 340, 116–128. https://doi.org/10.1016/j.geomorph.2019.04.029.

    Article  Google Scholar 

  • Perreault, P., & Shur, Y. (2016). Seasonal thermal insulation to mitigate climate change impacts on foundations in permafrost regions. Cold Regions Science and Technology, 132, 7–18. https://doi.org/10.1016/j.coldregions.2016.09.008.

    Article  Google Scholar 

  • Ping, C.-L., Clark, M. H., Kimble, J. M., Michaelson, G. J., Shur, Y., & Stiles, C. A. (2013). Sampling protocols for permafrost-affected soils. Soil Horizons. https://doi.org/10.2136/sh12-09-0027.

  • Pokrovsky, O. S., Shirokova, L. S., Kirpotin, S. N., Audry, S., Viers, J., & Dupre, B. (2011). Effect of permafrost thawing on organic carbon and trace element colloidal speciation in the thermokarst lakes of western Siberia. Biogeosciences, 8(3), 565–583. https://doi.org/10.5194/bg-8-565-2011.

    Article  CAS  Google Scholar 

  • Prévost, D., Bordeleau, L. M., Caudry-Reznick, S., Schulman, H. M., & Antoun, H. (1987). Characteristics of rhizobia isolated from three legumes indigenous to the Canadian high arctic: Astragalus alpinus, Oxytropis maydelliana, and Oxytropis arctobia. Plant and Soil, 98(3), 313–324. https://doi.org/10.1007/bf02378352.

    Article  Google Scholar 

  • Pryde, P. R. (1991). Environmental management in the Soviet Union (Cambridge Soviet Paperbacks; 4, Vol. Accessed from https://nla.gov.au/nla.cat-vn1080305). Cambridge: Cambridge University Press.

  • Quinn, J. A., & Woodward, S. L. (2015). Earth’s landscape: An encyclopedia of the world’s geographic features (Vol. 2, p. 887). ABC-CLIO.

  • Rahn, K. A., & Lowenthal, D. H. (1984). Elemental traces of distant regional pollution aerosols. Science, 223(4632), 132–139. https://doi.org/10.1126/science.223.4632.132.

    Article  CAS  Google Scholar 

  • Ravichandran, M., Baskaran, M., Santschi, P. H., & Bianchi, T. S. (1995). History of trace metal pollution in Sabine-Neches Estuary, Beaumont, Texas. Environmental Science and Technology, 29(6), 1495–1503. https://doi.org/10.1021/es00006a010.

    Article  CAS  Google Scholar 

  • Reimann, C., Boyd, R., deCaritat, P., Halleraker, J. H., Kashulina, G., Niskavaara, H., et al. (1997). Topsoil (0–5 cm) composition in eight arctic catchments in northern Europe (Finland, Norway and Russia). Environmental Pollution, 95(1), 45–56. https://doi.org/10.1016/s0269-7491(96)00102-9.

    Article  CAS  Google Scholar 

  • Reimann, C., Halleraker, J. H., Kashulina, G., & Bogatyrev, I. (1999). Comparison of plant and precipitation chemistry in catchments with different levels of pollution on the Kola Peninsula, Russia. Science of the Total Environment, 243, 169–191. https://doi.org/10.1016/s0048-9697(99)00390-3.

    Article  Google Scholar 

  • Rieuwerts, J. S., Thornton, I., Farago, M. E., & Ashmore, M. R. (1998). Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability, 10(2), 61–75. https://doi.org/10.3184/095422998782775835.

    Article  CAS  Google Scholar 

  • Romanovsky, V. E., Drozdov, D. S., Oberman, N. G., Malkova, G. V., Kholodov, A. L., Marchenko, S. S., et al. (2010). Thermal state of permafrost in Russia. Permafrost and Periglacial Processes, 21(2), 136–155. https://doi.org/10.1002/ppp.683.

    Article  Google Scholar 

  • Rovinsky, F., Pastukhov, B., Bouyvolov, Y., & Burtseva, L. (1995). Present day state of background pollution of the natural environment in the Russian Arctic in the region of the Ust-Lena Reserve. Science of the Total Environment, 160–161, 193–199. https://doi.org/10.1016/0048-9697(95)04356-6.

    Article  Google Scholar 

  • Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of Major and Trace Elements in Sediments of the Ria de Vigo (NW Spain): An Assessment of Metal Pollution. Marine Pollution Bulletin, 40(11), 968–980. https://doi.org/10.1016/S0025-326X(00)00039-4.

    Article  CAS  Google Scholar 

  • Rundgren, S., Ruhling, A., Schluter, K., & Tyler, G. (1992). Mercury in soil: Distribution, speciation and biological effects. A review of the literature and comments on critical concentrations. Copenhagen: Nordic Council of Ministers.

  • Ryaboshapko, A., Gallardo, L., Kjellström, E., Gromov, S., Paramonov, S., Afinogenova, O., et al. (1998). Balances of oxidized sulfur and nitrogen over the former Soviet Union territory. Atmospheric Environment, 32(4), 647–658. https://doi.org/10.1016/S1352-2310(97)00298-7.

    Article  CAS  Google Scholar 

  • Sahoo, P. K., Equeenuddin, S. M., & Powell, M. A. (2016). Trace elements in soils around coal mines: Current scenario, impact and available techniques for management. Current Pollution Reports, 2(1), 1–14. https://doi.org/10.1007/s40726-016-0025-5.

    Article  CAS  Google Scholar 

  • Saleh, S. M. K., Thabit Amer, A., & Al-Alawi, A. (2018). Potential ecological risk of heavy metals in surface sediments from the Aden coast, Southern Yemen. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 12(10), 42–55. https://doi.org/10.9790/2402-1210024255.

    Article  CAS  Google Scholar 

  • Shevchenko, V., Lisitzin, A., Vinogradova, A., & Stein, R. (2003). Heavy metals in aerosols over the seas of the Russian Arctic. Science of the Total Environment, 306(1), 11–25. https://doi.org/10.1016/S0048-9697(02)00481-3.

    Article  CAS  Google Scholar 

  • Sitko, R., Zawisza, B., Jurczyk, J., Buhl, F., & Zielonka, U. (2004). Determination of high Zn and Pb concentrations in polluted soils using energy-dispersive X-ray fluorescence spectrometry. Polish Journal of Environmental Studies, 13(1), 91–96.

    CAS  Google Scholar 

  • Smith, S. L., Romanovsky, V. E., Lewkowicz, A. G., Burn, C. R., Allard, M., Clow, G. D., et al. (2010). Thermal state of permafrost in North America: A contribution to the international polar year. Permafrost and Periglacial Processes, 21(2), 117–135. https://doi.org/10.1002/ppp.690.

    Article  Google Scholar 

  • Survey, G. (1970). Mercury in the environment: A compilation of papers on the abundance, distribution, and testing of mercury in rocks, soils, waters, plants, and the atmosphere. New York: US Government Printing Office.

  • Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S. (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles. https://doi.org/10.1029/2008gb003327.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265. https://doi.org/10.1029/95RG00262.

    Article  Google Scholar 

  • Tian, K., Huang, B., Xing, Z., & Hu, W. Y. (2017). Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecological Indicators, 72, 510–520. https://doi.org/10.1016/j.ecolind.2016.08.037.

    Article  CAS  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresuntersuchungen, 33(1–4), 566–575. https://doi.org/10.1007/bf02414780.

    Article  Google Scholar 

  • Walker, D. A., Leibman, M. O., Epstein, H. E., Forbes, B. C., Bhatt, U. S., Raynolds, M. K., et al. (2009). Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: Interactions of ecological and social factors affecting the Arctic normalized difference vegetation index. Environmental Research Letters. https://doi.org/10.1088/1748-9326/4/4/045004.

  • Wedepohl, K. H. (1967). Thisen, R—Quantitative electron microprobe analysis. Naturwissenschaften, 54(2), 52.

    Article  Google Scholar 

  • Wilkinson, M. T., & Humphreys, G. S. (2005). Exploring pedogenesis via nuclide-based soil production rates and OSL-based bioturbation rates. Australian Journal of Soil Research, 43(6), 767–779. https://doi.org/10.1071/sr04158.

    Article  CAS  Google Scholar 

  • WRB. (2015). World reference base (WRB) for soil resources, international soil classification system for naming soils and creating legends for soil maps. Rome; Food and Agriculture Organization of the United Nation (FAO).

  • Xu, Z., Ni, S., Tuo, X., & Zhang, C. (2008). Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environmental Science and Technology, 31(2), 112–115.

    CAS  Google Scholar 

  • Zhulidov, A. V., Robarts, R. D., Pavlov, D. F., Kamari, J., Gurtovaya, T. Y., Merilainen, J. J., et al. (2011). Long-term changes of heavy metal and sulphur concentrations in ecosystems of the Taymyr Peninsula (Russian Federation) North of the Norilsk Industrial Complex. Environmental Monitoring and Assessment, 181(1–4), 539–553. https://doi.org/10.1007/s10661-010-1848-y.

    Article  CAS  Google Scholar 

  • Zinkute, R., Taraskevicius, R., Jankauskaite, M., & Stankevicius, Z. (2017). Methodological alternatives for calculation of enrichment factors used for assessment of topsoil contamination. Journal of Soils and Sediments, 17(2), 440–452. https://doi.org/10.1007/s11368-016-1549-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant of Russian Foundation for Basic research (18-44-890003, 19-416-890002, and 19-05-50107) and by a Grant of Saint Petersburg State University “Urbanized ecosystems of the Russian Arctic: dynamics; state and sustainable development (Grant No. 39377455).” The authors are grateful to Dr. Julia Antcibor from Institute of Soil Science, University of Hamburg, for her assistance in laboratory. We would like to thank Miss Yu Su from the School of Visual Arts at BFA Computer Art for helping with data visualization and Miss Kuznetsova Ekaterina from School of Journalism and Communication, Tsinghua University, for helping with the Russian translation. We are very grateful to two anonymous reviewers for carefully pointing out the mistakes and giving good suggestions for revision of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowen Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Abakumov, E., Tomashunas, V. et al. Geochemical pollution of trace metals in permafrost-affected soil in the Russian Arctic marginal environment. Environ Geochem Health 42, 4407–4429 (2020). https://doi.org/10.1007/s10653-020-00587-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00587-2

Keywords

Navigation