Skip to main content

Advertisement

Log in

Distribution of contaminant trace metals inadvertently provided by phosphorus fertilisers: movement, chemical fractions and mass balances in contrasting acidic soils

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The frequent use of phosphorus (P) fertilisers accompanied by nitrogen and potassium sources may lead to a serious long-term environmental issue because of the presence of potentially hazardous trace metals (TM) in P fertilisers and unknown effects on the TM chemical fractions in agricultural soils. A 16-month-long column experiment was conducted to investigate the mobility and chemical forms of Cd, Cu, Cr, Ni, and Zn introduced into a Mollisol and an Andisol through surface incorporation (0–2 cm) of triple superphosphate (TSP) fertiliser. The effects of urea and potassium chloride (KCl) applications were investigated as well. After 15 cycles of 300-mm irrigation, TSP addition increased the 4 M HNO3 extractable TM concentration in the upper (0–5 cm) section of soils. Beyond this depth, metals showed no significant mobility, with minimal leaching losses (< 1.9%, 25-cm depth). The TM chemical forms in the 0–5 cm section were significantly (p < 0.01) affected by the soil type and fertilisers addition. Cadmium, Ni, and Zn were the elements which appeared in a larger proportion (up to 30%) in the most labile fraction (KNO3 extractable) in fertilised soils. The impact of urea depended on the nitrification-related changes in soil pH, while fertilisation with KCl tended to increase the KNO3 fraction of most metals probably due to K+ exchange reactions. Chromium remained minimally affected by the urea and KCl applications since this contaminant is strongly bound to the less labile solid phases. The low mobility of TM was governed mainly by their interaction with the solid phases rather than by their speciation at soil pH. The mass balance showed that the geochemical processes underwent in time by the P fertiliser increased the amount of TM extracted by the chemical fractionation scheme, therefore the reaction period of TSP with soil particles should be taken into account for evaluating TM availability. Long-term soil fertilisation could inadvertently contribute to an increased concentration and availability of these P fertilisers-born contaminants in the cultivated layer of acidic soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta, A., Jansen, B., Kalbitz, K., Faz, A., & Martínez-Martínez, S. (2011). Salinity increases mobility of metals in soils. Chemosphere, 85, 1318–1324.

    Article  CAS  Google Scholar 

  • Agbenin, J. O., & Olojo, L. A. (2004). Competitive adsorption of copper and zinc by a Bt horizon of a savanna Alfisol as affected by pH and selective removal of hydrous oxides and organic matter. Geoderma, 119, 85–95.

    Article  CAS  Google Scholar 

  • Antilén, M., Araya, N., Briceño, M., & Escudey, M. (2006). Changes on chemical fractions of heavy metals in Chilean soils amended with sewage sludge affected by a thermal impact. Australian Journal of Soil Research, 44, 619–625.

    Article  Google Scholar 

  • Antoniadis, V., & Alloway, B. J. (2002). Leaching of cadmium, nickel, and zinc down the profile of sewage sludge-treated soil. Communication in Soil Science and Plant Analysis, 33, 237–286.

    Article  Google Scholar 

  • Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. Journal of Geology and Geophysics, 5, 237–240.

    Article  Google Scholar 

  • Barrow, N., & Debnath, A. (2015). Effect of phosphate status and pH on sulphate sorption and desorption. European Journal of Soil Science, 66, 286–297.

    Article  CAS  Google Scholar 

  • Basta, N., & Tabatabai, M. (1992). Effect of cropping systems on adsorption of heavy metals in soils: II. Effect of pH. Soil Science, 153, 195–204.

    Article  CAS  Google Scholar 

  • Bolan, N., Adriano, D. C., Duraisami, P., Mani, A., & Arulmozhiselvan, K. (2003). Immobilization and phytoavailability of cadmium in variable charge soils. I. Effect of phosphate addition. Plant and Soil, 250, 83–94.

    Article  CAS  Google Scholar 

  • Bolan, N., Naidu, R., Khan, M. A. R., Tillman, R. W., & Syers, J. (1999). The effects of anion sorption on sorption and leaching of cadmium. Australian Journal of Soil Research, 37, 445–460.

    Article  CAS  Google Scholar 

  • Bolan, N., & Thiagarajan, S. (2001). Retention and plant availability of chromium in soils as affected by lime and organic matter amendments. Australian Journal of Soil Research, 39, 1091–1103.

    Article  CAS  Google Scholar 

  • Cazanga, M., Gutiérrez, M., Escudey, M., Galindo, G., Reyes, A., & Chang, A. C. (2008). Adsorption isotherms of copper, lead, nickel, and zinc in two Chilean soils in single- and multi-component systems: sewage sludge impact on the adsorption isotherm of Diguillín soil. Australian Journal of Soil Research, 46, 53–61.

    Article  CAS  Google Scholar 

  • Chen, G., He, Z., Stoffella, P., Yang, X., Yang, J., & Calvert, D. (2006). Leaching potential of heavy metals (Cd, Ni, Cu, Pb, and Zn) from acidic sandy soil amended with dolomite phosphate rock fertilizers. Journal of Trace Elements in Medicine and Biology, 20, 127–133.

    Article  CAS  Google Scholar 

  • Chen, W., Krage, N., Wu, L., Pan, G., Khosrivafard, M., & Chang, A. C. (2008). Arsenic, cadmium, and lead in California cropland soils: Role of phosphate and micronutrient fertilizers. Journal of Environmental Quality, 37, 689–695.

    Article  CAS  Google Scholar 

  • Chen, S., Sun, L., Sun, T., Chao, L., & Guo, G. (2007). Interaction between cadmium, lead and potassium fertiliser (K2SO4) in a soil-plant system. Environmental Geochemistry and Health, 29, 435–436.

    Article  CAS  Google Scholar 

  • Cordell, D., & White, S. (2013). Sustainable phosphorus measures: Strategies and technologies for achieving phosphorus security. Agronomy, 3, 86–116.

    Article  Google Scholar 

  • Cui, Y., & Weng, L. (2015). Interpretation of heavy metals speciation in sequential schemes using geochemical modelling. Environmental Chemistry, 12, 163–173.

    Article  CAS  Google Scholar 

  • Czarnecki, S., & Düring, R. (2015). Influence of long-term mineral fertilization on metal content and properties of soil samples taken from different locations in Hesse, Germany. Soil, 1, 23–33.

    Article  CAS  Google Scholar 

  • Dach, J., & Starmans, D. (2005). Heavy metals balance in Polish and Dutch agronomy: actual state and previsions for the future. Agriculture, Ecosystems & Environment, 107, 309–316.

    Article  CAS  Google Scholar 

  • Dahlgren, R. A., Saigusa, S., & Ugolini, F. C. (2004). The nature, properties, and management of volcanic soils. Advances in Agronomy, 82, 113–182.

    Article  CAS  Google Scholar 

  • Escudey, M., Förster, J. E., & Galindo, G. (2004). Relevance of organic matter in some chemical and physical characteristics of volcanic ash-derived soils. Communications in Soil Science and Plant Analysis, 35, 781–797.

    Article  CAS  Google Scholar 

  • Gacitúa, M., Antilén, M., & Briceño, M. (2008). K-Ca-Mg binary cation exchange equilibrium in saline soils from the north of Chile. Soil Research, 46, 745–750.

    Article  Google Scholar 

  • García-Miragaya, J., & Page, A. L. (1976). Influence of ionic strength and inorganic complex formation on the sorption of trace amounts of Cd by montmorillonite. Soil Science Society of America Journal, 40, 658–663.

    Article  Google Scholar 

  • Giuffré, L., Ratto, S., & Marbán, L. (1997). Heavy metals input with phosphate fertilizers used in Argentine. Science of the Total Environment, 204, 245–250.

    Article  Google Scholar 

  • Gray, C., McLaren, R., Roberts, A., & Condron, L. (1999). The effect of long-term phosphatic fertiliser applications on the amount and forms of cadmium in soils under pasture in New Zealand. Nutrient Cycling in Agroecosystems, 54, 267–277.

    Article  CAS  Google Scholar 

  • Guevara-Riva, A., Sahuquillo, A., Rubio, R., & Rauret, G. (2005). Effect of Chloride on heavy metal mobility of harbour sediments. Analytical and Bioanalytical Chemistry, 382, 353–359.

    Article  Google Scholar 

  • Hoins, U., Charlet, L., & Sticher, H. (1993). Ligand effect on the adsorption of heavy metals: The sulphate-cadmium-goethite case. Water, Air, and Soil pollution, 68, 241–255.

    Article  CAS  Google Scholar 

  • Hu, B., Jia, X., Hu, J., Xu, D., Xia, F., & Li, Y. (2017). Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze river delta, China. Environmental Research and Pollution Research, 14, 1042–1059.

    Google Scholar 

  • Jiao, W., Chen, W., Chang, A. C., & Page, A. (2012). Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environmental Pollution, 168, 44–53.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Katyal, J., Carter, M., & Vlek, P. (1988). Nitrification activity in submerged soils and its relation to denitrification loss. Biology and Fertility of Soils, 7, 16–22.

    Article  Google Scholar 

  • Kim, R.-Y., Yoon, J.-K., Kim, T.-S., Yang, J. E., Owens, G., & Kim, K.-R. (2015). Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environmental Geochemistry and Health, 37, 1041–1061.

    Article  CAS  Google Scholar 

  • Kunhikrishnan, A., Park, J., Bolan, S., Naidu, R., & Bolan, N. (2015). Phosphorus-induced (im)mobilization of heavy metal(loid)s in soils. In H. M. Selim (Ed.), Phosphate in soils: Interactions with micronutrients, radionuclides and heavy metals (pp. 1–38). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Lambert, R., Grant, C., & Sauvé, S. (2007). Cadmium and zinc in soil solution extracts following the application of phosphorus fertilizers. Science of the Total Environment, 378, 293–305.

    Article  CAS  Google Scholar 

  • Levi-Minzi, R., & Petruzzelli, G. (1984). The influence of phosphate fertilizers on Cd solubility in soil. Water, Air, and Soil pollution, 23, 423–429.

    Article  CAS  Google Scholar 

  • Liu, J., Duan, C.-Q., Zhu, Y.-N., Zhang, X.-H., & Wang, C.-X. (2007). Effects of chemical fertilizers on the fractionation of Cu, Cr and Ni in a contaminated soil. Environmental Geology, 52, 1601–1606.

    Article  CAS  Google Scholar 

  • Lorenz, S., Hamon, R., McGrath, S., Holm, P., & Christensen, T. (1994). Application of fertilizer cations affects cadmium and zinc concentrations in soil solutions and uptake by plants. European Journal of Soil Science, 45, 159–165.

    Article  CAS  Google Scholar 

  • McGowen, S., Basta, N. T., & Brown, G. O. (2001). Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soils. Journal of Environmental Quality, 30, 493–500.

    Article  CAS  Google Scholar 

  • McLaughlin, M., Parker, D., & Clarke, J. (1999). Metals and micronutrients - Food and safety issues. Field Crops Research, 60, 143–163.

    Article  Google Scholar 

  • McLaughlin, M., Tiller, K., Naidu, R., & Stevens, D. (1996). Review: The behaviour and environmental impact of contaminants in fertilizers. Australian Journal of Soil Research, 34, 1–54.

    Article  CAS  Google Scholar 

  • McLaughlin, M., Whatmuff, M., Warne, M., Heemsbergen, D., Barry, G., Bell, M., et al. (2006). A field investigation of solubility and food chain of biosolid-Cd across diverse soil types. Environmental Chemistry, 3, 428–432.

    Article  CAS  Google Scholar 

  • Mendes, A. M. S., Pereira, G., Araújo, C., & Oliveira, M. (2006). Bioavailability of cadmium and lead in a soil amended with phosphorus fertilizers. Scientia Agricola (Piracicaba, Brazil), 63,328-332.

  • Molina, M., Aburto, F., Caderón, R., Cazanga, M., & Escudey, M. (2009). Trace element composition of selected fertilizers used in Chile: Phosphorus fertilisers as a source of long-term soil contamination. Soil and Sediment Contamination, 18, 497–511.

    Article  CAS  Google Scholar 

  • Molina, M., Escudey, M., Chang, A. C., Chen, W., & Arancibia, N. (2013). Trace element uptake dynamics for maize (Zea mays L.) grown under field conditions. Plant and Soil, 370, 471–483.

    Article  CAS  Google Scholar 

  • Molina, M., Manquián-Cerda, K., & Escudey, M. (2010). Sorption and selectivity sequences of Cd, Cu, Ni, Pb, in single- and multi-component systems in a cultivated Chilean Mollisol. Soil and Sediment Contamination, 19, 405–418.

    Article  CAS  Google Scholar 

  • Palmer, C. R., & Wittbrodt, P. R. (1991). Processes affecting the remediation of chromium-contaminated sites. Environmental Health and Perspective, 92, 25–40.

    Article  CAS  Google Scholar 

  • Parker, D., Norvell, W., & Chaney, R. (1995). GEOCHEM-PC: a chemical speciation program for IBM and compatible personal computers. In R. Loeppert et al. (Eds.), Chemical equilibrium and reaction models (pp. 253-269). Madison, WI, USA: Special publication N°42, Soil Science Society of America.

  • Pérez-Novo, C., Pateriro-Moure, M., Osorio, F., Novoa-Muñoz, J., López-Periago, E., & Arias-Estévez, M. (2008). Influence of organic matter removal on competitive and noncompetitive adsorption of copper and zinc in acids soils. Journal of Colloid Interface Science, 322, 33–40.

    Article  Google Scholar 

  • Qu, C. S., Ma, Z. W., Yang, J., Liu, Y., Bi, J., & Huang, L. (2012). Human exposure pathways of heavy metals in a lead-zinc mining area, Jiangsu Province, China. PLoS ONE, 7, 1–11.

    Google Scholar 

  • Rao, C. R. M., Sahuquillo, A., & Lopez-Sanchez, J. F. (2008). A review of different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air, and Soil pollution, 189, 291–333.

    Article  CAS  Google Scholar 

  • Roy, A., & McClellan, G. (1986). Processing phosphate ores into fertilizers. In A. Mokwunye & P. Vlek (Eds.), Management of nitrogen and phosphate fertilisers in Sub-Saharan Africa (pp. 225–254). USA: Martinus Nijhoff Publishers.

    Chapter  Google Scholar 

  • SAG (2005). Informe: Criterios de calidad de suelo agrícola. Santiago, Chile: Servicio Agrícola y Ganadero (SAG) y Universidad de Chile, Ministerio de Agricultura.

  • Sahrawat, K. L. (2008). Factors affecting nitrification in soils. Communications in Soil Science and Plant Analysis, 39, 1436–1446.

    Article  CAS  Google Scholar 

  • SAS Institute (2013). SAS/STAT Version 9.4. Cary, NC, USA: SAS Institute.

  • Schroder, J., Zhang, H., Girma, K., Raun, W., Penn, C., & Payton, M. (2011). Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Science Society of America Journal, 75, 957–964.

    Article  CAS  Google Scholar 

  • Selim, H. M. (2013). Competitive sorption of heavy metals in soils: experimental evidence. In H. M. Selim (Ed.), Competitive sorption and transport of heavy metals in soils and geological media (pp. 1–48). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Shuman, L. M. (1991). Chemical forms of micronutrients in soils, In J. Mortvedt, F. Cox, L. Shuman, & R. Welch (Eds.), Micronutrients in Agriculture, 2 nd Ed. (pp. 113-144). Madison, WI, USA: Book series N°4, Soil Science Society of America.

  • Smolders, E., Lambregts, R., McLaughlin, M., & Tiller, K. (1998). Effect of soil solution chloride on cadmium availability to swiss chard. Journal of Environmental Quality, 27, 427–431.

    Article  Google Scholar 

  • Smolders, E., Oorts, K., Lombi, E., Schoeters, I., Ma, Y., Zrna, S., et al. (2012). The availability of copper in soils historically amended with sewage sludge, manure, and compost. Journal of Environmental Quality, 41, 506–514.

    Article  CAS  Google Scholar 

  • Spark, D. (Ed.) (1996). Methods of soil analysis, part 3, Chemical methods. Madison, WI, USA: Book Series N°5, Soil Science Society of America.

  • Sposito, G., Lund, L. J., & Chang, A. C. (1982). Trace metal chemistry in arid-zone field soils. I. Fractionation of Ni, Cu, Zn, and Pb in solid phases. Soil Science Society of America Journal, 46, 260–264.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1991). Organic matter-micronutrient reactions in soil. In J. Mortvedt, F. Cox, L. Shuman, R. Welch (Eds.), Micronutrients in agriculture, 2 nd Ed. (pp.145-186). Madison, WI, USA: Book series N°4, Soil Science Society of America.

  • Tu, C., Zheng, C., & Chen, H. (2000). Effect of applying chemical fertilizers on forms of lead and cadmium in red soil. Chemosphere, 41, 133–138.

    Article  CAS  Google Scholar 

  • WHO (2017). Guidelines for drinking-water quality, 4th Ed. Geneva, Switzerland: World health Organization (WHO).

  • Xiang, X., & In Shokohifard, G. I. (1989). Effect of pH on chemical forms and plant availability of cadmium, zinc and lead in polluted soils. Water, Air, and Soil pollution, 45, 265–273.

    Google Scholar 

  • Xie, R. J., & MacKenzie, A. F. (1988). The pH effect on the sorption-desorption and fractions of zinc in phosphate treated soils. Communication in Soil Science and Plant Analysis, 19, 873–886.

    Article  CAS  Google Scholar 

  • Yu, T. R., Sun, H. Y., & Zhang, H. (1997). Specific adsorption of cations. In R. Yu (Ed.), Chemistry of variable charge soils (pp. 140–174). New York, USA: Oxford University Press.

    Google Scholar 

Download references

Acknowledgements

Support from the Chilean Fund for Scientific and Technological Development (FONDECYT) Projects Nos. 1070116 and 11110509, the Centre for Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile, and the CONICYT PIA/ANILLO ACM170002 are kindly acknowledged. Authors also recognise the analytical support from the Faculty of Chemistry, Pontifical Catholic University of Chile (CEQUC). Dr. Mauricio Molina acknowledges a scholarship from the Program for Improvement in Superior Education Quality (MECESUP), Chile (PUC-MECESUP 0210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Molina-Roco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina-Roco, M., Escudey, M., Antilén, M. et al. Distribution of contaminant trace metals inadvertently provided by phosphorus fertilisers: movement, chemical fractions and mass balances in contrasting acidic soils. Environ Geochem Health 40, 2491–2509 (2018). https://doi.org/10.1007/s10653-018-0115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0115-y

Keywords

Navigation