Skip to main content
Log in

Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan

Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Agency for Toxic Substances and Disease Registry (ATSDR). (1999). Toxicological profile for mercury, Georgia.

  • Brooks, S., Luke, W., Cohen, M., Kelly, P., Lefer, B., & Rappengluck, B. (2010). Mercury species measured atop the Moody Tower TRAMP site, Houston, Texas. Atmospheric Environment, 44, 4045–4055.

    Article  CAS  Google Scholar 

  • Chand, D., Jaffe, D., Prestbo, E., Swartzendruber, P. C., Hafner, W., Weiss-Penzias, P., et al. (2008). Reactive and particulate mercury in the Asian marine boundary layer. Atmospheric Environment, 42, 7988–7996.

    Article  CAS  Google Scholar 

  • Chen, L., Liu, M., Xu, Z., Fan, R., Tao, J., Chen, D., et al. (2013). Variation trends and influencing factors of total gaseous mercury in the Pearl River Delta—A highly industrialised region in South China influenced by seasonal monsoons. Atmospheric Environment, 77, 757–766.

    Article  CAS  Google Scholar 

  • Cheng, I., Zhang, L., Mao, H., Blanchard, P., Tordon, R., & Dalziel, J. (2014). Seasonal and diurnal patterns of speciated atmospheric mersury at a coastal-rural and a coastal-urban site. Atmospheric Environment, 82, 193–205.

    Article  CAS  Google Scholar 

  • Choi, H. D., Holsen, T. M., & Hopke, P. K. (2008). Atmospheric mercury (Hg) in the Adirondacks: Concentrations and sources. Environmental Science and Technology, 42, 5644–5653.

    Article  CAS  Google Scholar 

  • Choi, H. D., Huang, J., Mondal, S., & Hol, T. M. (2013). Variation in concentrations of three mercury (Hg) forms at a rural and a suburban site in New York State. Science of the Total Environment, 448, 96–106.

    Article  CAS  Google Scholar 

  • Choi, E. M., Kim, S. H., Holsen, T. M., & Yi, S. M. (2009). Total gaseous concentrations in mercury in Seoul, Korea: Local sources compared to long-range transport from China and Japan. Environmental Pollution, 157(3), 816–822.

    Article  CAS  Google Scholar 

  • Draxler, R. R. (1999). HYSPLIT4 user’s guide. NOAA Tech. Memo. ERL ARL-230, NOAA Air Resources Laboratory, Silver Spring, MD.

  • Fang, G. C., Cheng, M. T., & Chang, C. N. (1997). Monitoring and modeling the mass, heavy metal and ion species dry deposition in central Taiwan. Journal of Environmental Science and Health. Part A, A32(8), 2183–2199.

    CAS  Google Scholar 

  • Fang, G. C., Huang,Y. L., Huang, J. H., & Liu, C. K. (2012). Dry deposition of Mn, Zn, Cr, Cu and Pb in particles of sizes of 3 μm, 5.6 μm and 10 μm in central Taiwan. Journal of Hazardous Materials, 203–204(15), 158–168.

    Article  CAS  Google Scholar 

  • Fang, G. C., Lin, S. J., Chang, S. Y., & Chou, C. C. K. (2009). Effect of typhoon on atmospheric particulates in autumn in central Taiwan. Atmospheric Environment, 43(38), 6039–6048.

    Article  CAS  Google Scholar 

  • Fang, F., Wang, Q., & Li, J. (2004). Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: Source, cycle, and fate. Science of the Total Environment, 330(1–3), 159–170.

    Article  CAS  Google Scholar 

  • Fu, X. W., Feng, X., Deliger, P. L., Zhang, H., Ji, J., & Liu, P. (2012). Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China. Atmospheric Chemistry and Physics, 12, 1951–1964.

    Article  CAS  Google Scholar 

  • Fu, X., Feng, X., Qiu, G., Shang, L., & Zhang, H. (2011). Speciated atmospheric mercury and its potential source in Guiyang, China. Atmospheric Environment, 45, 4205–4212.

    Article  Google Scholar 

  • Gabriel, M. C., Williamson, D. G., Brooks, S., & Lindberg, S. (2005). Atmospheric speciation of mercury in two contrasting Southeastern US airsheds. Atmospheric Environment, 39, 4947–4958.

  • Gavilan-García, I. C., Fernandez-Villagomez, G., Gavilan-García, A., & Alcantara-Concepcion, V. (2015). Alternatives of management and disposal for mercury thermometers at the end of their life from Mexican health care institutions. Journal of Cleaner Production, 86, 118–124.

  • Gratz, L. E., Keeler, G. J., Marsik, F. J., Barres, J. A., & Dvonch, J. T. (2013). Atmospheric transport of speciated mercury across southern Lake Michigan: Influence from emission sources in the Chicago/Gary urban area. Science of the Total Environment, 448, 84–95.

    Article  CAS  Google Scholar 

  • Han, Y. J., Holsen, T. M., Lai, S. O., Hopke, P. K., Yi, S. M., Liu, W., et al. (2004). Atmospheric gaseous mercury concentrations in New York State: Relationships with meteorological data and other pollutants. Atmospheric Environment, 38, 6431–6446.

    Article  CAS  Google Scholar 

  • Han, Y. J., Kim, J. E., Kim, P. R., Kim, W. J., Yi, S. M., Seo, Y. S., et al. (2014). General trends of atmospheric mercury concentrations in urban and rural areas in Korea and characteristics of high-concentration events. Atmospheric Environment, 94, 754–764.

    Article  CAS  Google Scholar 

  • Huang, J., Liu, C. K., Huang, C. S., & Fang, G. C. (2012). Atmospheric mercury pollution at an urban site in central Taiwan: Mercury emission sources at ground level. Chemosphere, 87, 579–585.

    Article  CAS  Google Scholar 

  • Jaffe, D., Prestbo, E., Swartzendruber, P., Weiss-Penzias, P., Kato, S., Takami, A., et al. (2005). Export of atmospheric mercury from Asia. Atmospheric Environment, 39, 3029–3038.

    Article  CAS  Google Scholar 

  • Jen, Y. H., Yuan, C. S., Hung, C. H., Ie, I. R., & Tsai, C. M. (2013). Tempospatial variation and partition of atmospheric mercury during wet and dry seasons at sensitivity sites within a heavily polluted industrial city. Aerosol and Air Quality Research, 13(13–23), 2013.

    Google Scholar 

  • Jiang, Y., Cizdziel, J. V., & Lu, D. (2013). Temporal patterns of atmospheric mercury species in northern Mississippi during 2011–2012: Influence of sudden population swings. Chemosphere, 93(9), 1694–1700.

    Article  CAS  Google Scholar 

  • Kim, S. H., Han, Y. J., Holsen, T. M., & Yi, S. M. (2009). Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea. Atmospheric Environment, 43, 3267–3274.

    Article  CAS  Google Scholar 

  • Kim, K. H., Yoon, H. O., Brown, R. J. C., Jeon, E. C., Sohn, J. R., Jung, K., et al. (2013). Simultaneous monitoring of total gaseous mercury at four urban monitoring stations in Seoul, Korea. Atmospheric Research, 132–133, 199–208.

    Article  Google Scholar 

  • Kock, H. H., Bieber, E., Ebinghaus, R., Spain, T. G., & Thees, B. (2005). Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany. Atmospheric Environment, 39, 7549–7556.

    Article  CAS  Google Scholar 

  • Kocman, D., Horvat, M., Pirrone, N., & Cinnirella, S. (2013). Contribution of contaminated sites to the global mercury budget. Environmental Research, 125, 160–170.

    Article  CAS  Google Scholar 

  • Kuo, T. H., Chang, C. F., Urba, A., & Kvietkus, K. (2006). Atmospheric gaseous mercury in Northern Taiwan. Science of the Total Environment, 368, 10–18.

    Article  CAS  Google Scholar 

  • Landis, M. S., & Keeler, G. J. (2002). Atmospheric mercury deposition to Lake Michigan during the Lake Michigan mass balance study. Environmental Science and Technology, 36, 4518–4524.

    Article  CAS  Google Scholar 

  • Li, X., & Zhang, H. (2012). Seasonal variations in dust concentration and dust emission observed over Horqin Sandy Land area in China from December 2010 to November 2011. Atmospheric Environment, 61, 51–65.

    Google Scholar 

  • Lin, C. C., Chen, S. J., & Huang, K. L. (2005). Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science and Technology, 39(21), 8113–8122.

    Article  CAS  Google Scholar 

  • Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., et al. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio, 36(1), 19–32.

    Article  CAS  Google Scholar 

  • Liu, F., Cheng, H., Yang, K., Zhao, C., Liu, Y., Peng, M., et al. (2014). Characteristics and influencing factors of mercury exchange flux between soil and air in Guangzhou City. Journal of Geochemical Exploration, 139, 115–121.

    Article  CAS  Google Scholar 

  • Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., et al. (2007). Temporal variability of mercury speciation in urban air. Atmospheric Environment, 41, 1911–1923.

    Article  CAS  Google Scholar 

  • Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., et al. (2010). Urban−rural differences in atmospheric mercury speciation. Atmospheric Environment, 44, 2013–2023.

    Article  CAS  Google Scholar 

  • Lyman, S. N., & Gustin, M. S. (2009). Determinants of atmospheric mercury concentrations in Reno, Nevada, U.S.A. Science of the Total Environment, 408, 431–438.

    Article  CAS  Google Scholar 

  • Ma, F., Peng, C., Hou, D., Wu, B., Zhang, Q., Li, F., et al. (2015). Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil. Journal of Hazardous Materials, 300, 546–552.

    Article  CAS  Google Scholar 

  • Masahiro, S., & Kohji, M. (2005). Wet and dry deposition fluxes of mercury in Japan. Atmospheric Environment, 39, 3139–3146.

    Article  Google Scholar 

  • Mason, R. P., & Sullivan, K. A. (1997). Mercury in lake Michigan. Environmental Science and Technology, 31, 942–947.

    Article  CAS  Google Scholar 

  • May, A. A., Ashman, P., Huang, J., Dhaniyala, S., & Holsen, T. M. (2011). Evaluation of the polyurethane foam (PUF) disk passive air sampler: Computational modeling and experimental measurements. Atmospheric Environment, 45(26), 4354–4359.

    Article  CAS  Google Scholar 

  • Narukawa, M., Sakata, M., Marumoto, K., & Asakura, K. (2006). Air-sea exchange of mercury in Tokyo Bay. Journal of Oceanography, 62, 249–257.

    Article  CAS  Google Scholar 

  • Nguyen, H. T., Kim, M. Y., & Kim, K. H. (2010). The influence of long-range transport on atmospheric mercury on Jeju Island, Korea. Science of the Total Environment, 408, 1295–1307.

    Article  CAS  Google Scholar 

  • Odabasi, M., Muezzinoglu, A., & Bozlaker, A. (2002). Ambient concentrations and dry deposition fluxes of trace elements in Izmir, Turkey. Atmospheric Environment, 36, 5841–5851.

    Article  CAS  Google Scholar 

  • Pacyna, E., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4048–4063.

    Article  CAS  Google Scholar 

  • Pan, L., Lin, C. J., Carmichael, G. R., Streets, D. G., Tang, Y., Woo, J. H., et al. (2010). Study of atmospheric mercury budget in East Asia using STEM-Hg modeling system. Science of the Total Environment, 408, 3277–3291.

    Article  CAS  Google Scholar 

  • Poissant, L., Pilote, M., Beauvais, C., Constant, P., & Zhang, H. H. (2005). A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hgp) in southern Québec, Canada. Atmospheric Environment, 39, 1275–1287.

    Article  CAS  Google Scholar 

  • Sakata, M., & Marumoto, K. (2002). Formation of atmospheric particulate mercury in the Tokyo metropolitan area. Atmospheric Environment, 36, 239–246.

    Article  CAS  Google Scholar 

  • Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury: An overview. Atmospheric Environment, 32, 809–822.

    Article  CAS  Google Scholar 

  • Shahin, U. M., Zhu, X., & Holsen, T. M. (1999). Dry deposition of reduced and reactive nitrogen: A surrogate surfaces approach. Environmental Science and Technology, 33, 2113–2117.

    Article  CAS  Google Scholar 

  • Sheu, G. R., Lin, N. H., Wang, J. L., Lee, C. T., Ou Yang, C. F., & Wang, S. H. (2010). Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment, 44, 2393–2400.

    Article  CAS  Google Scholar 

  • United Nations Environment Programme (UNEP). (2002). Global mercury assessment. Geneva, Switzerland.

  • United Nations Environment Programme (UNEP). (2013). Global mercury assessment 2013: Sources, emissions, releases, and environmental transport. Geneva, Switzerland.

  • United Nations Environment Programme. (UNEP). (2013). Technical background report for the global Hg assessment (Geneva).

  • Valente, R. J., Shea, C., Humes, K. L., & Tanner, R. L. (2007). Atmospheric mercury in the Great Smoky Mountains compared to regional and global levels. Atmospheric Environment, 41, 1861–1873.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, S. X., Zhang, L., Wang, Y. X., Zhang, Y. X., Nielsen, C., et al. (2014). Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model. Environmental Pollution, 190, 166–175.

    Article  CAS  Google Scholar 

  • Witt, M. L. I., Mather, T. A., Baker, A. R., De Hoog, J. C. M., & Pyle, D. M. (2010). Atmospheric trace metals over the south-west Indian Ocean: Total gaseous mercury, aerosol trace metal concentrations and lead isotope ratios. Marine Chemistry, 121, 2–16.

    Article  CAS  Google Scholar 

  • Wu, Y., Wang, S. X., Streets, D. G., Hao, J. M., Chan, M., & Jiang, J. K. (2006). Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science and Technology, 40, 5312–5318.

    Article  CAS  Google Scholar 

  • Xu, L., Chen, J., Yang, L., Niu, Z., Tong, L., Yin, L., et al. (2015). Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China. Chemosphere, 119, 530–539.

    Article  CAS  Google Scholar 

  • Yang, Y., Chen, H., & Wang, D. (2009). Spatial and temporal distribution of gaseous elemental mercury in Chongqing, China. Environmental Monitoring and Assessment, 156, 479–489.

    Article  CAS  Google Scholar 

  • Zhang, Y., Xiu, G., Wu, X., Moore, C. W., Wang, J., Cai, J., et al. (2013). Characterization of mercury concentrations in snow and potential sources, Shanghai, China. Science of the Total Environment, 449, 434–442.

    Article  CAS  Google Scholar 

  • Zielonka, U., Hlawiczka, S., Fudala, J., Wängberg, I., & Munthe, J. (2005). Seasonal mercury concentrations measured in rural air in Southern Poland Contribution from local and regional coal combustion. Atmospheric Environment, 39, 7580–7586.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Science Council of ROC (Taiwan) for financial support under project No. NSC 104-2632-E-241-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guor-Cheng Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, GC., Lo, CT., Cho, MH. et al. Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan. Environ Geochem Health 39, 901–911 (2017). https://doi.org/10.1007/s10653-016-9861-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9861-x

Keywords

Navigation