Skip to main content

Advertisement

Log in

Elemental composition of Malawian rice

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryza sativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic elements including arsenic (As), cadmium (Cd) and lead (Pb). The aim of this study was to determine the mineral composition of rice sampled from farmers’ fields and markets in Malawi. Rice was sampled from 18 extension planning areas across Malawi with 21 white (i.e. polished) and 33 brown samples collected. Elemental composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Arsenic speciation was performed using high-performance liquid chromatography (HPLC)-ICP-MS. Concentration of PA was determined using a PA-total phosphorus assay. Median total concentrations (mg kg−1, dry weight) of elements important for human nutrition in brown and white rice, respectively, were: Ca = 66.5 and 37.8; Cu = 3.65 and 2.49; Fe = 22.1 and 7.2; I = 0.006 and <0.005; Mg = 1130 and 265; Mn = 18.2 and 9.6; Se = 0.025 and 0.028; and Zn = 17.0 and 14.4. In brown and white rice samples, respectively, median PA concentrations were 5438 and 1906 mg kg−1, and median PA:Zn molar ratios were 29 and 13. Concentrations of potentially toxic elements (mg kg−1, dry weight) in brown and white rice samples, respectively, were: As = 0.030 and 0.006; Cd  ≤ 0.002 and 0.006; Pb = 0.008 and 0.008. Approximately 95 % of As was found to be inorganic As, where this could be quantified. Malawian rice, like the more widely consumed staple grain maize, contains inadequate Ca, I, Se or Zn to meet dietary requirements. Biofortification strategies could significantly increase Se and Zn concentrations and require further investigation. Concentrations of Fe in rice grain varied greatly, and this was likely due to contamination of rice samples with soil. Risk of As, Cd or Pb toxicity due to rice consumption in Malawi appears to be minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adedire, C. O., Adeyemi, J. A., Paulelli, A. C., Martins-Junior, A. C., Ileke, K. D., Segura, F. R., et al. (2015). Toxic and essential elements in Nigerian rice and estimation of dietary intake through rice consumption. Food Additives & Contaminants: Part B, 8(4), 271–276.

    CAS  Google Scholar 

  • Adomako, E. E., Williams, P. N., Deacon, C., & Meharg, A. A. (2011). Inorganic arsenic and trace elements in Ghanaian grain staples. Environmental Pollution, 159(10), 2435–2442.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 31(5), 537–548.

    Article  CAS  Google Scholar 

  • Al-Rmalli, S. W., Jenkins, R. O., Watts, M. J., & Haris, P. I. (2012). Reducing human exposure to arsenic, and simultaneously increasing selenium and zinc intake, by substituting non-aromatic rice with aromatic rice in the diet. Biomedical Spectroscopy and Imaging, 1(4), 365–381.

    CAS  Google Scholar 

  • Banerjee, M., Banerjee, N., Bhattacharjee, P., Mondal, D., Lythgoe, P. R., Martinez, M., et al. (2013). High arsenic in rice is associated with elevated genotoxic effects in humans. Scientific Reports, 3, 1–8.

    Google Scholar 

  • Bohn, T., Davidsson, L., Walczyk, T., & Hurrell, R. F. (2004). Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. American Journal of Clinical Nutrition, 79(3), 418–423.

    CAS  Google Scholar 

  • Bouis, H. E., & Welch, R. M. (2010). Biofortification—A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science, 50(S1), 20–32.

    Article  Google Scholar 

  • Broadley, M. R., Chilimba, A. D. C., Joy, E. J. M., Young, S. D., Black, C. R., Ander, E. L., et al. (2012). Dietary requirements for magnesium but not calcium are likely to be met in Malawi based on national food supply data. International Journal for Vitamin and Nutrition Research, 82(3), 192–199.

    Article  CAS  Google Scholar 

  • Chilimba, A. D. C., Young, S. D., Black, C. R., Rogerson, K. B., Ander, E. L., Watts, M. J., et al. (2011). Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Scientific Reports,. doi:10.1038/srep00072.

    Google Scholar 

  • Daum, D., Bogdan, K., Schenk, M. K., & Merkel, D. (2002). Influence of the field water management on accumulation of arsenic and cadmium in paddy rice. In W. J. Horst, et al. (Eds.), Plant nutrition (pp. 290–291). Dordrecht: Springer.

    Google Scholar 

  • Duxbury, J. M., Mayer, A. B., Lauren, J. G., & Hassan, N. (2003). Food chain aspects of arsenic contamination in Bangladesh: Effects on quality and productivity of rice. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 38(1), 61–69.

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations, FAO. (2015). FAOSTAT database. http://faostat3.fao.org/. Accessed June 2015.

  • Fredlund, K., Isaksson, M., Rossander-Hulthén, L., Almgren, A., & Sandberg, A. S. (2006). Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate. Journal of Trace Elements in Medicine and Biology, 20(1), 49–57.

    Article  CAS  Google Scholar 

  • Fuge, R., & Johnson, C. C. (1986). The geochemistry of iodine—A review. Environmental Geochemistry and Health, 8(2), 31–54.

    Article  CAS  Google Scholar 

  • Gibson, R. S., Bailey, K. B., Gibbs, M., & Ferguson, E. L. (2010). A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food and Nutrition Bulletin, 31(2 Suppl), S134–146.

    Article  Google Scholar 

  • Gibson, R. S., Wawer, A. A., Fairweather-Tait, S. J., Hurst, R., Young, S. D., Broadley, M. R., et al. (2015). Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil. Journal of Food Composition and Analysis, 40, 19–23.

    Article  CAS  Google Scholar 

  • Hamilton, E. M., Barlow, T. S., Gowing, C. J. B., & Watts, M. J. (2015). Bioaccessibility performance data for fifty-seven elements in guidance material BGS 102. Microchemical Journal, 123, 131–138.

    Article  CAS  Google Scholar 

  • Harris, D., Rashid, A., Miraj, G., Arif, M., & Yunas, M. (2008). On-farm seed priming with zinc in chickpea and wheat in Pakistan. Plant and Soil, 306(1), 3–10.

    Article  CAS  Google Scholar 

  • Hurst, R., Siyame, E. W. P., Young, S. D., Chilimba, A. D. C., Joy, E. J. M., Black, C. R., et al. (2013). Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi. Scientific Reports,. doi:10.1038/srep01425.

    Google Scholar 

  • Institute of Medicine of the National Academies, IOM. (2000). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Washington DC: National Academies Press.

    Google Scholar 

  • Institute of Medicine of the National Academies, IOM. (2002). Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington DC: National Academies Press.

    Google Scholar 

  • Joy, E. J. M., Ander, E. L., Young, S. D., Black, C. R., Watts, M. J., Chilimba, A. D. C., et al. (2014). Dietary mineral supplies in Africa. Physiologia Plantarum, 151(3), 208–229.

    Article  CAS  Google Scholar 

  • Joy, E. J. M., Broadley, M. R., Young, S. D., Black, C. R., Chilimba, A. D. C., Ander, E. L., et al. (2015a). Soil type influences crop mineral composition in Malawi. Science of the Total Environment, 505(1), 587–595.

    Article  CAS  Google Scholar 

  • Joy, E. J. M., Kumssa, D. B., Broadley, M. R., Watts, M. J., Young, S. D., Chilimba, A. D. C., et al. (2015b). Dietary mineral supplies in Malawi: Spatial and socioeconomic assessment. BMC Nutrition, 1, 42. doi:10.1186/s40795-015-0036-4.

    Article  Google Scholar 

  • Joy, E. J. M., Stein, A. J., Young, S. D., Ander, E. L., Watts, M. J., & Broadley, M. R. (2015c). Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant and Soil, 389(1), 1–24.

    Article  CAS  Google Scholar 

  • Kalimbira, A. A., Chilima, D. M., Mtimuni, B. M., & Mvula, N. (2005). Knowledge and practices related to use of iodised salt among rural Malawian households. Bunda Journal of Agriculture, Environmental Science and Technology, 3, 73–82.

    Google Scholar 

  • Konietzny, U., & Greiner, R. (2003). Phytic acid: nutritional impact. In B. Caballero, L. Trugo, & P. Finglas (Eds.), Encyclopaedia of food science and nutrition (pp. 4555–4563). London: Elsevier.

    Chapter  Google Scholar 

  • Kumssa, D. B., Joy, E. J. M., Ander, E. L., Watts, M. J., Young, S. D., Walker, S., et al. (2015). Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Scientific Reports,. doi:10.1038/srep10974.

    Google Scholar 

  • Meharg, A. A., Williams, P. N., Adomako, E., Lawgali, Y. Y., Deacon, C., Villada, A., et al. (2009). Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science and Technology, 43(5), 1612–1617.

    Article  CAS  Google Scholar 

  • Mohammed, N. K., & Spyrou, N. M. (2009). Trace elemental analysis of rice grown in two regions of Tanzania. Journal of Radioanalytical and Nuclear Chemistry, 281, 79–82.

    Article  CAS  Google Scholar 

  • Mondal, D., & Polya, D. A. (2008). Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: A probabilistic risk assessment. Applied Geochemistry, 23(11), 2987–2998.

    Article  CAS  Google Scholar 

  • National Statistics Office of the Republic of Malawi, NSO. (2012). Malawi Third Integrated Household Survey (IHS3). NSO, Zomba, Malawi and World Bank Living Standards and Measurements Surveys. http://www.worldbank.org/en/research. Accessed Sep 2013.

  • Pinson, S. R. M., Tarpley, L., Yan, W., Yeater, K., Lahner, B., Yakubova, E., et al. (2014). Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Science, 55(1), 1–18.

    Google Scholar 

  • Reason, D. A., Watts, M. J., Devez, A., Broadley, M. R. (2015). Quantification of phytic acid in grains, British Geological Survey Open Report, OR/15/070, p. 18.

  • Rothenberg, S. E., Mgutshini, N. L., Bizimis, M., Johnson-Beebout, S. E., & Ramanantsoanirina, A. (2015). Retrospective study of methylmercury and other metal(loid)s in Madagascar unpolished rice (Oryza sativa L.). Environmental Pollution, 196, 125–133.

    Article  CAS  Google Scholar 

  • Siyame, E. W. P., Hurst, R., Wawer, A. A., Young, S. D., Broadley, M. R., Chilimba, A. D. C., et al. (2013). A high prevalence of zinc-but not iron-deficiency among women in rural Malawi: A cross-sectional study. International Journal for Vitamin and Nutrition Research, 83(3), 176–187.

    Article  CAS  Google Scholar 

  • Smith, E., Naidu, R., & Alston, A. M. (1998). Arsenic in the soil environment: A review. Advances in Agronomy, 64, 149–195.

    Article  CAS  Google Scholar 

  • Stein, A. J. (2010). Global impacts of human mineral malnutrition. Plant and Soil, 335(1), 133–154.

    Article  CAS  Google Scholar 

  • Stein, A. J., Nestel, P., Meenakshia, J. V., Qaim, M., Sachdev, H. P. S., & Bhutta, Z. A. (2007). Plant breeding to control zinc deficiency in India: How cost-effective is biofortification? Public Health Nutrition, 10(5), 492–501.

    Article  Google Scholar 

  • Stroud, J. L., Khan, M. A., Norton, G. J., Islam, M. R., Dasgupta, T., Zhu, Y.-G., et al. (2011). Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions. Environmental Science Technology, 45, 4262–4269.

    Article  CAS  Google Scholar 

  • United States Department of Agriculture, Agricultural Research Service, USDA-ARS. (2013). USDA National Nutrient Database for Standard Reference, Release 26. http://www.ars.usda.gov/nutrientdata. Accessed Sep 2014.

  • United States Environmental Protection Agency, US EPA. (1994). Integrated risk information system (IRIS): Cadmium. http://www.epa.gov/iris/subst/0141.htm. Accessed Sep 2015.

  • United States Environmental Protection Agency, US EPA. (1998). Integrated risk information system (IRIS): Inorganic arsenic. http://www.epa.gov/iris/subst/0278.htm. Accessed Sep 2015.

  • United States Food and Drug Administration, US FDA. (2013). Analytical results from inorganic arsenic in rice and rice products sampling. http://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm319870.htm. Accessed Mar 2014.

  • Verduzco‐Gallo, I., Ecker, O., & Pauw, K. (2014). Changes in food and nutrition security in Malawi: Analysis of recent survey evidence. Working Paper 06. International Food Policy Research Institute, Washington DC, USA.

  • Watts, M. J., Button, M., Brewer, T. S., Jenkin, G. R., & Harrington, C. F. (2008). Quantitative arsenic speciation in two species of earthworms from a former mine site. Journal of Environmental Monitoring, 10(6), 753–759.

    Article  CAS  Google Scholar 

  • Watts, M. J., Joy, E. J. M., Young, S. D., Broadley, M. R., Chilimba, A. D. C., Gibson, R. S., et al. (2015). Iodine source apportionment in the Malawian diet. Scientific Reports,. doi:10.1038/srep15251.

    Google Scholar 

  • Wessells, K. P., & Brown, K. H. (2012). Estimating global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One, 7(11), e50568. doi:10.1371/journal.pone.0050568.

    Article  Google Scholar 

  • White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49–84.

    Article  CAS  Google Scholar 

  • Williams, P. N., Lombi, E., Sun, G.-X., Scheckel, K., Zhu, Y.-G., Feng, X., et al. (2009). Selenium characterization in the global rice supply chain. Environmental Science and Technology, 43(15), 6024–6030.

    Article  CAS  Google Scholar 

  • Williams, P. N., Price, A. H., Raab, A., Hossain, S. A., Feldmann, J., & Meharg, A. A. (2005). Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science and Technology, 39(15), 5531–5540.

    Article  CAS  Google Scholar 

  • World Health Organization and Food and Agriculture Organization of the United Nations, WHO & FAO. (2004). Vitamin and mineral requirements in human nutrition. Geneva: WHO.

    Google Scholar 

  • World Health Organization, WHO. (2001). Arsenic and arsenic compounds. Environmental health criteria 224 (2nd ed.). Geneva: WHO.

    Google Scholar 

  • World Health Organization, WHO. (2008). Worldwide prevalence of anaemia 1993–2005: WHO global database on anaemia. Geneva: WHO. http://apps.who.int/iris/bitstream/10665/43894/1/9789241596657_eng.pdf. Accessed 19 July 2016.

  • Yang, Q. W., Lan, C. Y., Wang, H. B., Zhuang, P., & Shu, W. S. (2006). Cadmium in soil–rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang. China. Agricultural Water Management, 84(1–2), 147–152.

    Article  Google Scholar 

  • Yang, Q. W., Shu, W. S., Qiu, J. W., Wang, H. B., & Lan, C. Y. (2004). Lead in paddy soils and rice plants and its potential health risk around Lechang lead/zinc mine, Guangdong, China. Environment International, 30, 883–889.

    Article  CAS  Google Scholar 

  • Zia, M. H., Watts, M. J., Gardner, A., & Chenery, S. R. (2015). Iodine status of soils, grain, crops, and irrigation waters in Pakistan. Environmental Earth Sciences, 73(12), 7995–8008.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

EJMJ, MRB, ADCC, ELA, SDY and MJW conceived the study; EJMJ and ADCC collected samples; MJW and EMH analysed the samples; EJMJ drafted the text and figures; all authors read, contributed to and approved the final manuscript. EJMJ’s PhD studentship was funded by the University of Nottingham, UK and the British Geological Survey. The authors would like to thank Paul Williams (Queens University Belfast) and Andy Meharg (University of Aberdeen) for providing valuable advice, references and supplementary data during the manuscript drafting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Watts.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joy, E.J.M., Louise Ander, E., Broadley, M.R. et al. Elemental composition of Malawian rice. Environ Geochem Health 39, 835–845 (2017). https://doi.org/10.1007/s10653-016-9854-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9854-9

Keywords

Navigation