Skip to main content

Advertisement

Log in

Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Crops grown in metal-rich serpentine soils are vulnerable to phytotoxicity. In this study, Gliricidia sepium (Jacq.) biomass and woody biochar were examined as amendments on heavy metal immobilization in a serpentine soil. Woody biochar was produced by slow pyrolysis of Gliricidia sepium (Jacq.) biomass at 300 and 500 °C. A pot experiment was conducted for 6 weeks with tomato (Lycopersicon esculentum L.) at biochar application rates of 0, 22, 55 and 110 t ha−1. The CaCl2 and sequential extractions were adopted to assess metal bioavailability and fractionation. Six weeks after germination, plants cultivated on the control could not survive, while all the plants were grown normally on the soils amended with biochars. The most effective treatment for metal immobilization was BC500-110 as indicated by the immobilization efficiencies for Ni, Mn and Cr that were 68, 92 and 42 %, respectively, compared to the control. Biochar produced at 500 °C and at high application rates immobilized heavy metals significantly. Improvements in plant growth in biochar-amended soil were related to decreasing in metal toxicity as a consequence of metal immobilization through strong sorption due to high surface area and functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad, M., et al. (2013). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.

    Article  Google Scholar 

  • Ahmad, M., et al. (2014a). Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water. Journal of Chemical Technology and Biotechnology, 89, 150–157.

    Article  CAS  Google Scholar 

  • Ahmad, M., et al. (2014b). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Lee, S. E., Al-Wabel, M. I., Tsang, D. C., & Ok, Y. S. (2016a) Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. Journal of Soils and Sediments, 1–14.

  • Ahmad, M., et al. (2016b). Impact of soybean stover-and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. Journal of Environmental Management, 166, 131–139.

    Article  CAS  Google Scholar 

  • Ahmad, M., et al. (2016c). Lead and copper immobilization in a shooting range soil using soybean stover-and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. Journal of Hazardous Materials, 301, 179–186.

    Article  CAS  Google Scholar 

  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379.

    Article  CAS  Google Scholar 

  • Anderson, J. M., & Ingram, J. (1989). Tropical soil biology and fertility. Wallingford: CAB International.

    Google Scholar 

  • Antibachi, D., Kelepertzis, E., & Kelepertsis, A. (2012). Heavy metals in agricultural soils of the Mouriki-Thiva area (central Greece) and environmental impact implications. Soil and Sediment Contamination: An International Journal, 21, 434–450.

    Article  CAS  Google Scholar 

  • Awad, Y. M., Blagodatskaya, E., Ok, Y. S., & Kuzyakov, Y. (2012). Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities. European Journal of Soil Biology, 48, 1–10. doi:10.1016/j.ejsobi.2011.09.005.

    Article  CAS  Google Scholar 

  • Baugé, S., Lavkulich, L., & Schreier, H. (2013). Serpentine affected soils and the formation of magnesium phosphates (struvite). Canadian Journal of Soil Science, 93, 161–172.

    Article  Google Scholar 

  • Brennan, A., Jiménez, E. M., Puschenreiter, M., Alburquerque, J. A., & Switzer, C. (2014). Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant and Soil, 379, 351–360.

    Article  CAS  Google Scholar 

  • Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 42, 5137–5143.

    Article  CAS  Google Scholar 

  • Chia, C. H., Gong, B., Joseph, S. D., Marjo, C. E., Munroe, P., & Rich, A. M. (2012). Imaging of mineral-enriched biochar by FTIR, Raman and SEM–EDX. Vibrational Spectroscopy, 62, 248–257.

    Article  CAS  Google Scholar 

  • Christofaki, M. I. (2011). Effect of heavy metal stress in plant metabolism of solanaceous plant species with emphasis on nitrogen assimilation. Ph.D. Thesis. School of Health, University of Cranfield.

  • Ding, W., Dong, X., Ime, I. M., Gao, B., & Ma, L. Q. (2014). Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere, 105, 68–74. doi:10.1016/j.chemosphere.2013.12.042.

    Article  CAS  Google Scholar 

  • Ding, Z., Wan, Y., Hu, X., Wang, S., Zimmerman, A. R., & Gao, B. (2016). Sorption of lead and methylene blue onto hickory biochars from different pyrolysis temperatures: Importance of physicochemical properties. Journal of Industrial and Engineering Chemistry,. doi:10.1016/j.jiec.2016.03.035.

    Google Scholar 

  • Fellet, G., Marmiroli, M., & Marchiol, L. (2014). Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Science of the Total Environment, 468–469, 598–608. doi:10.1016/j.scitotenv.2013.08.072.

    Article  Google Scholar 

  • Fernandez, S., Seoane, S., & Merino, A. (1999). Plant heavy metal concentrations and soil biological properties in agricultural serpentine soils. Communications in Soil Science and Plant Analysis, 30, 1867–1884.

    Article  CAS  Google Scholar 

  • Graber, E. R., et al. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337, 481–496.

    Article  CAS  Google Scholar 

  • Herath, I., et al. (2015a). Bioenergy-derived waste biochar for reducing mobility, bioavailability, and phytotoxicity of chromium in anthropized tannery soil. Journal of Soils and Sediments, 1–10.

  • Herath, I., Kumarathilaka, P., Navaratne, A., Rajakaruna, N., & Vithanage, M. (2015b). Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. Journal of Soils and Sediments, 15, 126–138.

    Article  CAS  Google Scholar 

  • Houben, D., Evrard, L., & Sonnet, P. (2013a). Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass and Bioenergy, 57, 196–204.

    Article  CAS  Google Scholar 

  • Houben, D., Evrard, L., & Sonnet, P. (2013b). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92, 1450–1457. doi:10.1016/j.chemosphere.2013.03.055.

    Article  CAS  Google Scholar 

  • Hsiao, K. H., Bao, K. H., Wang, S. H., & Hseu, Z. Y. (2009). Extractable concentrations of cobalt from serpentine soils with several single-extraction procedures. Communications in Soil Science and Plant Analysis, 40, 2200–2224.

    Article  CAS  Google Scholar 

  • Hussain, M., et al. (2016a). Biochar for crop production: Potential benefits and risks. Journal of Soils and Sediments, 1–32.

  • Hussain, M., et al. (2016). Biochar for crop production: Potential benefits and risks Journal of Soils and Sediments.,. doi:10.1007/s11368-016-1360-2.

    Google Scholar 

  • Kanellopoulos, C., Argyraki, A., & Mitropoulos, P. (2015). Geochemistry of serpentine agricultural soil and associated groundwater chemistry and vegetation in the area of Atalanti. Greece Journal of Geochemical Exploration, 158, 22–33. doi:10.1016/j.gexplo.2015.06.013.

    Article  CAS  Google Scholar 

  • Karabcova, H., Pospisilova, L., Fiala, K., Skarpa, P., & Bjelkova, M. (2015). Effect of organic fertilizers on soil organic carbon and risk trace elements content in soil under permanent Grassland. Soil and Water Research, 10, 228–235.

    Article  Google Scholar 

  • Kayama, M., Sasa, K., & Koike, T. (2002). Needle life span, photosynthetic rate and nutrient concentration of Picea glehnii, P. jezoensis and P. abies planted on serpentine soil in northern Japan. Tree Physiology, 22, 707–716.

    Article  CAS  Google Scholar 

  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: Science and technology. London: Earthscan.

    Google Scholar 

  • Masto, R. E., Kumar, S., Rout, T. K., Sarkar, P., George, J., & Ram, L. C. (2013). Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena, 111, 64–71. doi:10.1016/j.catena.2013.06.025.

    Article  CAS  Google Scholar 

  • McCarl, B. A., Peacocke, C., Chrisman, R., Kung, C.-C., & Sands, R. D. (2009). Economics of biochar production, utilization and greenhouse gas offsets. In J. Lehmann & A. S. Joseph (Eds.), Biochar for Environmental Management: Science and Technology (pp. 341–358). London: Earthscan.

    Google Scholar 

  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresource Technology, 160, 191–202.

    Article  CAS  Google Scholar 

  • Ok, Y. S., Chang, S. X., Gao, B., & Chung, H.-J. (2015). SMART biochar technology—A shifting paradigm towards advanced materials and healthcare research. Environmental Technology & Innovation, 4, 206–209.

    Article  Google Scholar 

  • Ok, Y. S., Lim, J. E., & Moon, D. H. (2011). Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environmental Geochemistry and Health, 33, 83–91.

    Article  CAS  Google Scholar 

  • Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry of serpentine soils. International Geology Review, 46, 97–126.

    Article  Google Scholar 

  • Oze, C., Skinner, C., Schroth, A. W., & Coleman, R. G. (2008). Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the Central Coast Range of California. Applied Geochemistry, 23, 3391–3403.

    Article  CAS  Google Scholar 

  • Rajapaksha, A. U., Vithanage, M., Ok, Y. S., & Oze, C. (2013). Cr(VI) formation related to Cr(III)-muscovite and birnessite interactions in ultramafic environments. Environmental Science and Technology, 47, 9722–9729.

    Article  CAS  Google Scholar 

  • Rajapaksha, A. U., Vithanage, M., Oze, C., Bandara, W., & Weerasooriya, R. (2012). Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma, 189, 1–9.

    Article  Google Scholar 

  • Rajapaksha, A. U., et al. (2015). Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. Journal of Hazardous Materials, 290, 43–50.

    Article  CAS  Google Scholar 

  • Rajapaksha, A. U., et al. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148, 276–291. doi:10.1016/j.chemosphere.2016.01.043.

    Article  CAS  Google Scholar 

  • Ratuzny, T., Gong, Z., & Wilke, B.-M. (2009). Total concentrations and speciation of heavy metals in soils of the Shenyang Zhangshi Irrigation Area, China. Environmental Monitoring and Assessment, 156, 171–180.

    Article  CAS  Google Scholar 

  • Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., & Ok, Y. S. (2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review. Environmental Science and Pollution Research, 23, 2230–2248.

    Article  CAS  Google Scholar 

  • Rutigliano, F. A., Romano, M., Marzaioli, R., Baglivo, I., Baronti, S., Miglietta, F., & Castaldi, S. (2014). Effect of biochar addition on soil microbial community in a wheat crop. European Journal of Soil Biology, 60, 9–15. doi:10.1016/j.ejsobi.2013.10.007.

    Article  CAS  Google Scholar 

  • Saxena, J., Rana, G., & Pandey, M. (2013). Impact of addition of biochar along with Bacillus sp. on growth and yield of French beans. Scientia Horticulturae, 162, 351–356.

    Article  CAS  Google Scholar 

  • Smidt, E., & Meissl, K. (2007). The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Management, 27, 268–276.

    Article  CAS  Google Scholar 

  • Susaya, J. P., Kim, K.-H., Asio, V. B., Chen, Z.-S., & Navarrete, I. (2010). Quantifying nickel in soils and plants in an ultramafic area in Philippines. Environmental Monitoring and Assessment, 167, 505–514.

    Article  CAS  Google Scholar 

  • Tang, J., Zhu, W., Kookana, R., & Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 116, 653–659. doi:10.1016/j.jbiosc.2013.05.035.

    Article  CAS  Google Scholar 

  • Usman, A. R. A., et al. (2016). Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere, 26, 27–38.

    Article  Google Scholar 

  • Vithanage, M., Rajapaksha, A. U., Oze, C., Rajakaruna, N., & Dissanayake, C. (2014a). Metal release from serpentine soils in Sri Lanka. Environmental Monitoring and Assessment, 186, 3415–3429.

    Article  CAS  Google Scholar 

  • Vithanage, M., Rajapaksha, A. U., Tang, X., Thiele-Bruhn, S., Kim, K. H., Lee, S.-E., & Ok, Y. S. (2014b). Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. Journal of Environmental Management, 141, 95–103.

    Article  CAS  Google Scholar 

  • Wu, M., Han, X., Zhong, T., Yuan, M., & Wu, W. (2016). Soil organic carbon content affects the stability of biochar in paddy soil. Agriculture, Ecosystems & Environment, 223, 59–66. doi:10.1016/j.agee.2016.02.033.

    Article  Google Scholar 

  • Zhang, M., & Ok, Y. S. (2014). Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration. Carbon Management, 5, 255–257. doi:10.1080/17583004.2014.973684.

    Article  Google Scholar 

  • Zhang, X., et al. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20, 8472–8483.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The biochar characterizations were partly performed at the Central Laboratory of Kangwon National University, Korea Basic Science Institute (KBSI) and the National Center for Inter-University Research Facilities of Seoul National University in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meththika Vithanage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandara, T., Herath, I., Kumarathilaka, P. et al. Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environ Geochem Health 39, 391–401 (2017). https://doi.org/10.1007/s10653-016-9842-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9842-0

Keywords

Navigation