Skip to main content

Advertisement

Log in

Chinese population exposure to triclosan and triclocarban as measured via human urine and nails

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Triclosan (TCS) and triclocarban (TCC) exposures are highly concerned due to their suspected endocrine-disrupting effects. The present study investigated TCS and TCC exposure levels in the general Chinese population by biomonitoring human urine and nail samples. TCS (69–80 %) and TCC (99–100 %) were frequently detected, which demonstrates that the general Chinese population has extensive exposure to these chemicals. The geometric mean (GM) urinary concentrations were 0.40 μg/g creatinine (creat), 95 % confidence interval (CI) 0.30–0.56, for TCS and 0.40 μg/g creat, 95 % CI 0.29–0.56, for TCC. On the other hand, the GM levels of TCS and TCC were 13.57 (5.67 μg/kg) and 84.66 μg/kg (41.50 μg/kg) in fingernail (toenail) samples, respectively, indicating that the levels in fingernails were approximately twice as high as those in toenails. Pearson’s correlation coefficients between the urine and fingernail (toenail) samples were 0.715 (0.614) for TCS and 0.829 (0.812) for TCC. These data suggest that nail samples can be applied to the biomonitoring for TCS and TCC in the general population. We observed that the levels of both chemicals were higher in females than in males for urine and fingernail samples, but no significant differences were found between different genders for either compound in toenails. Nineteen- to 29-year-olds had the highest TCS levels in their nail samples, whereas TCC levels did not differ with regard to age. Region of residence significantly influenced TCS and TCC concentrations in the three biological matrices measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Angerer, J., Ewers, U., & Wilhelm, M. (2007). Human biomonitoring: State of the art. International Journal of Hygiene and Environmental Health, 210(3–4), 201–228.

    Article  CAS  Google Scholar 

  • Birch, C. G., Hiles, R. A., Eichhold, T. H., Jeffcoat, A. R., Handy, R. W., Hill, J. M., et al. (1978). Biotransformation products of 3,4,4′-trichlorocarbanilide in rat, monkey, and man. Drug Metabolism and Disposition, 6, 169–176.

    CAS  Google Scholar 

  • Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A., & Needham, L. L. (2008). Urinary concentrations of triclosan in the U.S. population: 2003–2004. Environmental Health Perspectives, 116(3), 303–307.

    Article  CAS  Google Scholar 

  • Casas, L., Fernandez, M. F., Llop, S., Guxens, M., Ballester, F., Olea, N., et al. (2011). Urinary concentrations of phthalates and phenols in a population of Spanish pregnant women and children. Environment International, 37(5), 858–866.

    Article  CAS  Google Scholar 

  • Cha, J., & Cupples, A. M. (2009). Detection of the antimicrobials triclocarban and triclosan in agricultural soils following land application of municipal biosolids. Water Research, 43(9), 2522–2530.

    Article  CAS  Google Scholar 

  • Chalew, T. E., & Halden, R. U. (2009). Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. Journal of the American Water Works Association, 45(1), 4–13.

    Article  CAS  Google Scholar 

  • Chung, E., Genco, M. C., Megrelis, L., & Ruderman, J. V. (2011). Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos. Proceedings of the National Academy of Sciences of the United States of America, 108(43), 17732–17737.

    Article  CAS  Google Scholar 

  • Crofton, K. M., Paul, K. B., Devito, M. J., & Hedge, J. M. (2007). Short-term in vivo exposure to the water contaminant triclosan: Evidence for disruption of thyroxine. Environmental Toxicology and Pharmacology, 24(2), 194–197.

    Article  CAS  Google Scholar 

  • Daniel, C. R., I. I. I., Piraccini, B. M., & Tosti, A. (2004). The nail and hair in forensic science. Journal of the American Academy of Dermatology, 50(2), 258–261.

    Article  Google Scholar 

  • Duleba, A. J., Ahmed, M. I., Sun, M., Gao, A. C., Villanueva, J., Conley, A. J., et al. (2011). Effects of triclocarban on intact immature male rat: Augmentation of androgen action. Reproductive Sciences, 18(2), 119–127.

    Article  CAS  Google Scholar 

  • Gautam, P., Carsella, J. S., & Kinney, C. A. (2014). Presence and transport of the antimicrobials triclocarban and triclosan in a wastewater-dominated stream and freshwater environment. Water Research, 48(1), 247–256.

    Article  CAS  Google Scholar 

  • Gee, R. H., Charles, A., Taylor, N., & Darbre, P. D. (2008). Oestrogenic and androgenic activity of triclosan in breast cancer cells. Journal of Applied Toxicology, 28(1), 78–91.

    Article  CAS  Google Scholar 

  • Geens, T., Roosens, L., Neels, H., & Covaci, A. (2009). Assessment of human exposure to bisphenol-A, triclosan and tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere, 76(6), 755–760.

    Article  CAS  Google Scholar 

  • Hiles, R. A., & Birch, C. G. (1978). The absorption, excretion, and biotransformation of 3,4,4′-trichlorocarbanilide in humans. Drug Metabolism and Disposition, 6(2), 177–183.

    CAS  Google Scholar 

  • Hornung, R. W., & Reed, L. D. (1990). Estimation of average concentration in the presence of nondetectable values. Applied Occupational and Environmental Hygiene, 5(1), 46–51.

    Article  CAS  Google Scholar 

  • Hurd-Brown, T., Udoji, F., Martin, T., & Whalen, M. M. (2013). Effects of DDT and triclosan on tumor-cell binding capacity and cell-surface protein expression of human natural killer cells. Journal of Applied Toxicology, 33(6), 495–502.

    Article  CAS  Google Scholar 

  • Kawaguchi, M., Ito, R., Honda, H., Endo, N., Okanouchi, N., Saito, K., & Nakazawa, H. (2008). Determination of urinary triclosan by stir bar sorptive extraction and thermal desorption–gas chromatography–mass spectrometry. Journal of Chromatography B, 875(2), 577–580.

    Article  CAS  Google Scholar 

  • Kim, K., Park, H., Yang, W., & Lee, J. H. (2011). Urinary concentrations of bisphenol A and triclosan and associations with demographic factors in the Korean population. Environmental Research, 111(8), 1280–1285.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Shin, S. H., & In, M. K. (2010). Determination of amphetamine-type stimulants, ketamine and metabolites in fingernails by gas chromatography–mass spectrometry. Forensic Science International, 194(1–3), 108–114.

    Article  CAS  Google Scholar 

  • Li, X., Ying, G. G., Zhao, J. L., Chen, Z. F., Lai, H. J., & Su, H. C. (2013). 4-Nonylphenol, bisphenol-A and triclosan levels in human urine of children and students in China, and the effects of drinking these bottled materials on the levels. Environment International, 52, 81–86.

    Article  CAS  Google Scholar 

  • Pirard, C., Sagot, C., Deville, M., Dubois, N., & Charlier, C. (2012). Urinary levels of bisphenol A, triclosan and 4-nonylphenol in a general Belgian population. Environment International, 48, 78–83.

    Article  CAS  Google Scholar 

  • Sandborgh-Englund, G., Adolfsson-Erici, M., Odham, G., & Ekstrand, J. (2006). Pharmacokinetics of triclosan following oral ingestion in humans. Journal of Toxicology and Environmental Health-Part A, 69(20), 1861–1873.

    Article  CAS  Google Scholar 

  • Scharpf, L. G, Jr, Hill, I. D., & Maibach, H. I. (1975). Percutaneous penetration and disposition of triclocarban in man: Body showering. Archives of Environmental Health, 30(1), 7–14.

    Article  CAS  Google Scholar 

  • Schebb, N. H., Buchholz, B. A., Hammock, B. D., & Rice, R. H. (2012). Metabolism of the antibacterial triclocarban by human epidermal keratinocytes to yield protein adducts. Journal of Biochemical and Molecular Toxicology, 26(6), 230–234.

    Article  CAS  Google Scholar 

  • Schebb, N. H., Inceoglu, B., Ahn, K. C., Morisseau, C., Gee, S. J., & Hammock, B. D. (2011). Investigation of human exposure to triclocarban after showering and preliminary evaluation of its biological effects. Environmental Science T and Technology, 45(7), 3109–3115.

    Article  CAS  Google Scholar 

  • Shi, Y., Liu, X., Zhang, J., & Shao, B. (2013). Analysis of triclosan and triclocarban in human nails using isotopic dilution liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 934, 97–101.

    Article  CAS  Google Scholar 

  • Sood, S., Choudhary, S., & Wang, H. C. (2013). Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin. Biochemical and Biophysical Research Communications, 438(4), 600–606.

    Article  CAS  Google Scholar 

  • Teitelbaum, S. L., Britton, J. A., Calafat, A. M., Ye, X., Silva, M. J., Reidy, J. A., et al. (2008). Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environmental Research, 106(2), 257–269.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (2009) Initial risk-based prioritization of high production volume (HPV) chemicals. Triclocarban (CASRN 101-20-2). http://www.epa.gov/hpvis/rbp/101-20-2_Triclocarban_Web_April%202009.pdf.

  • Wu, J. L., Leung, K. F., Tong, S. F., & Lam, C. W. (2012). Organochlorine isotopic pattern-enhanced detection and quantification of triclosan and its metabolites in human serum by ultra-high-performance liquid chromatography/quadrupole time-of-flight/mass spectrometry. Rapid Communication in Mass Spectrometry, 26(2), 123–132.

    Article  CAS  Google Scholar 

  • Ye, X., Zhou, X., Furr, J., Ahn, K. C., Hammock, B. D., Gray, E. L., & Calafat, A. M. (2011). Biomarkers of exposure to triclocarban in urine and serum. Toxicology, 286(1–3), 69–74.

    Article  CAS  Google Scholar 

  • Yueh, M. F., Li, T., Evans, R. M., Hammock, B., & Tukey, R. H. (2012). Triclocarban mediates induction of xenobiotic metabolism through activation of the constitutive androstane receptor and the estrogen receptor alpha. PLoS ONE, 7, e37705.

    Article  CAS  Google Scholar 

  • Zhao, J. L., Ying, G. G., Liu, Y. S., Chen, F., Yang, J. F., & Wang, L. (2010). Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: From source to the receiving environment. Journal of Hazardous Materials, 179(1–3), 215–222.

    Article  CAS  Google Scholar 

  • Zhou, X., Ye, X., & Calafat, A. M. (2012). Automated on-line column-switching HPLC–MS/MS method for the quantification of triclocarban and its oxidative metabolites in human urine and serum. Jounal Chromatography B, 881–882, 27–33.

    Article  Google Scholar 

  • Zorrilla, L. M., Gibson, E. K., Jeffay, S. C., Crofton, K. M., Setzer, W. R., Cooper, R. L., & Stoker, T. E. (2009). The effects of triclosan on puberty and thyroid hormones in male Wistar rats. Toxicological Sciences, 107(1), 56–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (No. 21177014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingqing Wu or Bing Shao.

Additional information

Jie Yin and Ling Wei have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Wei, L., Shi, Y. et al. Chinese population exposure to triclosan and triclocarban as measured via human urine and nails. Environ Geochem Health 38, 1125–1135 (2016). https://doi.org/10.1007/s10653-015-9777-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9777-x

Keywords

Navigation