Skip to main content
Log in

Spring water quality and usability in the Mount Cameroon area revealed by hydrogeochemistry

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater is the only reliable water resource for drinking, domestic, and agricultural purposes for the people living in the Mount Cameroon area. Hydrogeochemical and R-mode factor analysis were used to identify hydrogeochemical processes controlling spring water quality and assess its usability for the above uses. Main water types in the study area are Ca–Mg–HCO3 and Na–HCO3. This study reveals that three processes are controlling the spring water quality. CO2-driven silicate weathering and reverse cation exchange are the most important processes affecting the hydrochemistry of the spring waters. While tropical oceanic monsoon chloride-rich/sulfate-rich rainwater seems to affect spring water chemistry at low-altitude areas, strong correlations exist between major ions, dissolved silica and the altitude of springs. In general, the spring waters are suitable for drinking and domestic uses. Total hardness (TH) values indicate a general softness of the waters, which is linked to the development of cardiovascular diseases. Based on Na %, residual sodium carbonate, sodium adsorption ratio, and the USSL classification, the spring waters are considered suitable for irrigation. Though there is wide spread use of chemical fertilizers and intense urban settlements at the lower flanks of the volcano, anthropogenic activities for now seem to have little impact on the spring water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams, S., Titusa, R., Pietersen, K., Tredoux, G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo. South African Journal of Hydrology, 241, 91–103.

    CAS  Google Scholar 

  • Aiuppa, A., Allard, P., D’Alessandro, W., Michel, A., Parello, F., Treuil, M., et al. (2000). Mobility and fluxes of major, minor and trace elements during basalt weathering and groundwater transport at Mt Etna volcano (Sicily). Geochimica et Cosmochimica Acta, 64, 1827–1841.

    Article  CAS  Google Scholar 

  • Aiuppa, A., Bellomo, S., Brusca, L., D’Alessandro, W., & Federico, W. C. (2003). Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna, Italy). Applied Geochemistry, 18, 863–882.

    Article  CAS  Google Scholar 

  • APHA, AWWA & WEF. (1998). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

  • Appelo, C. A. J., & Postma, D. (1996). Chemical analysis of groundwater, geochemistry, groundwater and pollution. Rotterdam: Balkema.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (1999). Chemical analysis of groundwater, geochemistry, groundwater and pollution. Rotterdam: Balkema.

    Google Scholar 

  • Arnorsson, S. (1999). Progressive water–rock interaction and mineral- solution equilibria in groundwater systems. In H. Armannsson (Ed.), Geochemistry of the earth’s surface (pp. 471–474). Rotterdam: Balkema.

    Google Scholar 

  • Azah, L. A. (2009). A physico-chemical and microbiological analysis of some drinking water sources in Buea. MSc Thesis. University of Buea, Cameroon.

  • Back, W., & Hanshaw, B. (1966). Hydrochemistry of the Northern Yucatan Peninsula, Mexico, with a section on Mayan water practices. In A. E. Weidie (Ed.), Field seminar on water carbonate rocks of the Yucatan Peninsula Mexico (pp. 45–77). New Orleans: New Orleans Geological Society.

    Google Scholar 

  • Benedetti, M. F., Dia, A., Riotte, J., Chabaux, F., Gerald, M., Boulègue, J., et al. (2003). Chemical weathering of basaltic lava flows undergoing extreme climatic conditions: The water geochemistry record. Chemical Geology, 201, 1–17.

    Article  CAS  Google Scholar 

  • Chadha, D. K. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7, 431–439.

    Article  Google Scholar 

  • Chapman, D. V. (1996). Water quality assessments: A guide to the use of biota, sediments and water in environmental monitoring. London: Taylor and Francis. 625 pp.

    Book  Google Scholar 

  • COMA. (1994). Nutritional aspects of cardiovascular disease. Committee on Medical Aspect of Food Policy No. 46 (186 pp). London: HMSO.

  • Dafny, E., Burg, A., & Gvirtzman, H. (2006). Deduction of groundwater flow regime in a basaltic aquifer using geochemical and isotopic data: The Golan Heights. Israel case study. Journal of Hydrology,. doi:10.1016/j002006004002.

    Google Scholar 

  • Davis, S. N., & De Wiest, R. J. M. (1966). Hydrogeology (Vol. 463). New York: Wiley.

    Google Scholar 

  • Demlie, M., Wohnlich, S., Wisotzky, F., & Gizaw, B. (2007). Groundwater recharge, flow and hydrogeochemical evolution in a complex volcanic aquifer system, central Ethiopia. Journal of Hydrogeology, 15, 1169–1181.

    Article  CAS  Google Scholar 

  • Deruelle, B., N’ni, J., & Kambou, R. (1987). Mount Cameroon: An active volcano of the Cameroon Line. Journal of African Earth Sciences, 6(2), 197–221.

    Article  CAS  Google Scholar 

  • Deutsch, W. J. (1997). Groundwater geochemistry fundamentals and applications to contamination (p. 221). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Deutsch, W. A., Jenne, E. A., & Krupka, K. M. (1982). Solubility equilibria in basalt aquifers: The Columbian Plateau, eastern Washington, USA. Chemical Geology, 36, 15–34.

    Article  CAS  Google Scholar 

  • Dissanayake, C. B., Senaratne, A., & Weerassoriya, V. R. (1992). Geochemistry of well water and cardiovascular diseases in Siri Lanka. International Journal of Environmental Studies, 19, 195–203.

    Article  Google Scholar 

  • Drever, J. I. (1988). The geochemistry of natural waters. New Jersey: Prentice Hall.

    Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters. Surface and groundwater environments (p. 436). New Jersey: Prentice Hall.

    Google Scholar 

  • Durfor, C. N., & Becker, E. (1964). Public water supply of the 100 largest cities in the US (Paper 1812, 364). Washington, DC: US Geological Survey Water Supply.

    Google Scholar 

  • Durov, S. A. (1948). Natural waters and graphical representation of their composition. Doklady Akademii Nauk SSSR, 59, 87–90.

    CAS  Google Scholar 

  • Eaton, E. M. (1950). Significance in carbonate in irrigation water. Soil Science, 69, 123–133.

    Article  CAS  Google Scholar 

  • Edmunds, W. M., Shand, P., Hart, P., & Ward, R. S. (2003). The natural (baseline) quality of groundwater: A UK pilot study. Science of the Total Environment, 310, 25–35.

    Article  CAS  Google Scholar 

  • Endeley, R. E., Ayonghe, S. N., & Tchuenteu, F. (2001). A preliminary hydrochemical baseline study of water source around Mount Cameroon. Journal of Cameroon Academy of Science, 1(3), 161–168.

    Google Scholar 

  • Fisher, R. S., & Mulican, W. F. I. I. I. (1997). Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan desert, Trans-Pecos, Rexas, USA. Hydrogeology Journal, 10, 455–474.

    Google Scholar 

  • Folifac, F., Lifongo, L., Nkeng, G., & Gaskin, S. (2009). Municipal drinking water source protection in low income countries: Case of Buea municipality- Cameroon. Journal of Ecology of the Natural Environment, 1(4), 073–084.

    Google Scholar 

  • Foster, S. S. D. (1993). Groundwater conditions and problems characteristic of the humid tropics. In Hydrology of Warm Humid Regions (Proceedings of the Yokohama Symposium) (no. 216). IAHS Publication.

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater (p. 604). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Fritz, B. (1975). Etude thermodynamique et simulation des reactions entre mineraux et solutions. Application a la geochimie des alterations et des eaux continentals. Memoir, Universite de Strasbourg.

  • Garg, V. K., Suthar, S., Singh, S., Sheoran, A., Garima, M., & Jain, S. (2009). Drinking water quality of southwestern Haryana India: Assessing human health risks associated with hydrochemistry. Environmental Geology,. doi:10.1007/s002540081636y.

    Google Scholar 

  • Garrels, R. M. (1967). Genesis of some groundwaters from igneous rocks. In P. H. Abelson (Ed.), Researches in geochemistry (pp. 405–420). New York: Wiley.

    Google Scholar 

  • Garrels, R. M., & Mackenzie, F. T. (1967). Origin of the chemical composition of some springs and lakes. In R. F. Gould (Ed.), Equilibrium concepts in natural water systems. Washington, DC: American Chemical Society.

    Google Scholar 

  • Gerald, M., Bertaux, J., Ildefonse, Ph., Bulourde, M., Chauvel, Dia, A., Benedetti, M., et al. (1999). Weathering of Mount Cameroon: 1-Tephras: Mineralogy and geochemistry. In H. Armannsson (Ed.), Geochemistry of the earth’s surface (pp. 381–384). Rotterdam: Balkema.

    Google Scholar 

  • Giggenbach, W. F. (1988). Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52, 2749–2765.

    Article  CAS  Google Scholar 

  • Guler, C., Thyne, G., McCray, J. E., & Turner, A. K. (2002). Evaluation and graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10, 455–474.

    Article  CAS  Google Scholar 

  • Helgeson, H. C., Brown, T. C., & Leeper, R. H. (1969). Handbook of theoretical activity diagrams depicting chemical equilibria in geologic systems involving an aqueous phase at one atm and 0 and 30 °C (p. 253). San Francisco: Freeman, Cooper.

    Google Scholar 

  • Hem, J. D. (1989). The study and interpretation of the chemical characteristics of natural waters (3rd ed.). US Geological Survey.

  • Iwatsuki, T., & Yoshida, H. (1999). Groundwater chemistry and fracture mineralogy in the basement granitic rock in the Tono uranium mine area, Gifu Prefecture, Japan-Groundwater composition, Eh evolution analysis by fracture filling minerals. Geochemical Journal, 33, 19–32.

    Article  CAS  Google Scholar 

  • Jalali, M. (2007). Hydrochemical identification of groundwater resources and their changes under the impact of human activity in the Chah Basin in Western Iran. Environmental Monitoring and Assessment, 130, 347–364.

    Article  CAS  Google Scholar 

  • Jankowski, J., Acworth, R. I., & Shekarforoush, S. (1998). Reverse ion-exchange in deeply weathered porphyritic dacite fractured aquifer system, Yass, New South Wales, Austria. In G. B. Arehart & J. R. Hulston (Eds.), Proceedings of 9th international symposium on water-rock interaction (pp. 243–246). Taupo: Balkema Rotterdam.

    Google Scholar 

  • Jeong, C. H. (2001). Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology, 253, 194–210.

    Article  CAS  Google Scholar 

  • Karanth, K. R. (1987). Groundwater assessment, development and management. New Delhi: Tata-McGraw-Hill.

    Google Scholar 

  • Kortatsi, B. K. (2007). Hydrochemical characterization of groundwater in the Accra Plains of Ghana. Environmental Geology,. doi:10.1007/s0025400602064.

    Google Scholar 

  • Kumar, M., Kumari, K., Ramanathan, A., & Saxena, R. (2007). A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Journal of Environmental Geology, 53, 553–574.

    CAS  Google Scholar 

  • Lambi, C. M., & Kometa, S. S. (2009). An evaluation of water resources on the eastern slopes of Mount Cameroon. Journal of Human Ecology, 28(1), 47–55.

    Google Scholar 

  • Larsen, F., Owen, R., Dahlin, T., Mangeya, P., & Barmen, G. (2002). A preliminary analysis of the groundwater recharge to the Karoo formations, mid- Zambezi basin, Zimbabwe. Physics Chemical of the Earth, 27, 765–772.

    Article  Google Scholar 

  • Lawrence, F. W., & Upchurch, S. B. (1983). Identification of recharge areas using geochemical factor analysis. Groundwater, 20, 680–687.

    Article  Google Scholar 

  • Leuschner, C. (2000). Are high elevations in tropical mountains arid environments for plants? Ecology, 81, 1425–1436.

    Article  Google Scholar 

  • Mathieu, L., Kervyn, M., Gerald, G., & Ernst, J. (2011). Field evidence for flank instability, basal spreading and volcano-tectonic interactions at Mt Cameroon. West Africa. Bulletin of Volcanology,. doi:10.1007/s004450110458z.

    Google Scholar 

  • Mazor, E. (1997). Chemical and isotopic groundwater hydrology: The applied approach (p. 413). New York: Marcel Dekker.

    Google Scholar 

  • Mortatti, J., Probst, J. L., & Ferreira, J. R. (1992). Hydrological and geochemical characteristics of the Jamari and Jiparana River Basins (Rondonia, Brazil). Geology Journal, 26(3), 287–296.

    Google Scholar 

  • Nagarajan, R., Rajmohan, N., Mahendran, U., & Senthamilkumar, S. (2009). Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India. Environmental Monitoring and Assessment,. doi:10.1007/s1066100912799.

    Google Scholar 

  • Negrel, P. (1999). Geochemical study of a granitic area—the Margeride Mountains, France: Chemical element behavior and 87Sr/86Sr constraints. Aquatic Geochemistry, 5, 125–165.

    Article  CAS  Google Scholar 

  • Nesbitt, H. W., & Wilson, R. E. (1992). Recent chemical weathering of basalts. American Journal of Science, 292, 740–777.

    Article  CAS  Google Scholar 

  • Njitchoua, R., Sigha Nkamdjou, L., Dever, C. M., Sighomnou, D., & Nia, P. (1999). Variation in the stable isotopic composition of individual rainfall event from the rain forest region of Southern Cameroon, Central Africa. Journal of Hydrology, 223, 17–26.

    Article  CAS  Google Scholar 

  • Njome, M. S., Suh, C. E., de Wit, M. J. (2009). The Mount Cameroon Volcano, West Africa: An active link between recent eruptives and mantle signatures of the deep past beneath the margins of Africa (pp. 533–535). 11th SAGA Biennial Technical Meeting and Exhibition Swaziland.

  • Orock, F. T. (2006). Analysis of the degradation of springs and streams from perched aquifers on the eastern and southern slopes of Mount Cameroon. Unpublished MSc Thesis. University of Buea-Cameroon.

  • Paces, T. (1976). Kinetics of natural water systems. In Interpretation of environmental isotope and hydrochemical data in groundwater hydrology (pp. 85–108). International Atomic Energy Agency, Vienna.

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). PHREEQC for windows version 1.4.07. A hydrogeochemical transport model. US Geological Survey software.

  • Piper, A. M. (1944). A graphic procedure in geochemical interpretation of water analysis. Transactions-American Geophysical Union, 25(6), 914–928.

    Google Scholar 

  • Riotte, J., Chabaux, F., Benedetti, M. F., Dia, A., Gerald, M., Boulègue, J., et al. (2003). Uranium colloidal transport and origin of the 234U–238U fractionation in surface waters: New insights from Mount Cameroun. Chemical Geology, 202, 365–381.

    Article  CAS  Google Scholar 

  • Rose, T. P., Davisson, M. L., & Criss, R. E. (1996). Isotope hydrology of voluminous cold springs in fractured rock from an active volcanic region, northeastern California. Journal of Hydrology, 179, 207–236.

    Article  CAS  Google Scholar 

  • Schoeller, H. (1965). Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigations and development (pp. 54–83). Paris: UNESCO.

  • Schoeller, H. (1967). Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigation and development. Water research, Series-33 (pp. 44–52) Paris: UNESCO.

  • Sendler, A. (1981.) Geochemistry of groundwater from basaltic aquifers at the Lower Galilee and the Golan. MSc dissertation, GSI Report 81/2 (p. 91). The Hebrew University of Jerusalem.

  • Sieffermann, G. (1969). Les sols de quelques regions volcaniques du Cameroun. Unpublished PhD Thesis (183 pp). Strasbourg, France.

  • Sigha-Nkamdjou, L., Galy-Lacaux, C., Pont, V., Richard, S., Sighomnou, D., & Lacaux, J. P. (2003). Rainwater chemistry and wet deposition over the equatorial forested ecosystem of Zoetele (Cameroon). Journal of Atmospheric Chemistry, 46, 173–198.

    Article  CAS  Google Scholar 

  • Stallard, R. F. (1980). Major elements geochemistry of the Amazon River system. (p. 325) PhD thesis.

  • Stumm, W., & Morgan, J. J. (1970). Aquatic chemistry. New York: Wiley.

    Google Scholar 

  • Suh, C. E., Luhr, J. F., & Njome, M. S. (2008). Olivine-hosted glass inclusions from scoriae erupted in 1954–2000 at Mount Cameroon volcano, West Africa. Journal of Volcanology and Geothermal Research, 169, 1–33.

    Article  CAS  Google Scholar 

  • Suh, C. E., Sparks, R. S. J., Fitton, J. G., Ayonghe, S. N., Annen, C., Nana, R., et al. (2003). The 1999 and 2000 eruptions of Mount Cameroon: Eruption behaviour and petrochemistry of lava. Bulletin of Volcanology, 65, 267–281.

    Article  Google Scholar 

  • Tardy, Y. (1971). Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chemical Geology, 7, 253–271.

    Article  CAS  Google Scholar 

  • Thierry, P., Stieltjes, L., Kouokam, E., Ngueya, P., & Salley, P. M. (2008). Multi-hazard risk mapping and assessment on an active volcano: The GRINP project at Mount Cameroon. Natural Hazards, 45, 429–456.

    Article  Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology. New York: Wiley.

    Google Scholar 

  • United States Salinity Laboratory. (1954). Diagnosis and improvement of saline and alkaline soils. Washington: US Department of Agriculture.

    Google Scholar 

  • Wembenyui, E. W. (2007). Geochemical and isotopic constraints on HIMU magmatism: Evidence from Mount Cameroon and Mount Etinde (Cameroon, West Africa). PhD Thesis. The University of Queensland, Australia.

  • WHO. (1993). Guidelines for drinking water quality, recommendations (2nd ed.). Geneva: World Health Organization.

    Google Scholar 

  • WHO. (1997). Guideline for drinking water quality. Health criteria and other supporting information. Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2004). Guidelines for drinking water quality. Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2007). Chemical safety of drinking water: Assessing priorities for risk managements. Geneva: World Health Organization.

    Google Scholar 

  • Wilcox, L. V. (1958). The quality of water for irrigation. US Department of Agriculture.

Download references

Acknowledgments

This write-up constitutes part of data generated during the PhD study of the corresponding author, who is supported by the Monbukagakusho Scholarship from MEXT (Japanese Ministry of Education, Science, Sports and Culture). We thank the Ministry of Scientific Research and Innovation (MINRESI) of Cameroon and the Institute for Geological and Mining Research (IRGM) Yaoundé-Cameroon for putting the corresponding author on study leave during his PhD studies. Thanks are also due to the anonymous reviewers of the journal, who helped immensely in rewriting the paper in terms of content and language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Ako Ako.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ako, A.A., Shimada, J., Hosono, T. et al. Spring water quality and usability in the Mount Cameroon area revealed by hydrogeochemistry. Environ Geochem Health 34, 615–639 (2012). https://doi.org/10.1007/s10653-012-9453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-012-9453-3

Keywords

Navigation