Skip to main content

Advertisement

Log in

Simulating transport of 129I and idealized tracers in the northern North Atlantic Ocean

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Transport of the radioactive tracer Iodine-129 (129I, T 1/2 = 15.7 Myr) in the northern North Atlantic Ocean has been investigated using a global isopycnic Ocean General Circulation Model (OGCM) and observed data. 129I originates mainly from the nuclear fuel reprocessing plants in Sellafield (UK) and La Hague (France), and is transported northwards along the Norwegian coast, and then into surface and intermediate layers in the Arctic Ocean through the Barents Sea and the Fram Strait, but also partly recirculating south along the eastern coast of Greenland. In the North Atlantic Subpolar Seas, 129I is mainly found in dense overflow waters from the Nordic Seas being exported southwards in the Deep Western Boundary Current, and to a lesser extent in surface and intermediate layers circulating cyclonically within the Subpolar Gyre. Observed concentration of 129I along a surface transect in the eastern Nordic Seas in 2001 is captured by the OGCM, while in the Nansen Basin of the Arctic Ocean the OGCM overestimates the observed values by a factor of two. The vertical profile of 129I in the Labrador Sea, repeatedly observed since 1997 to present, is fairly realistically reproduced by the OGCM. This indicates that the applied model system has potential for predicting the magnitude and depth of overflow waters from the Nordic Seas into the North Atlantic Subpolar Seas. To supplement the information obtained from the 129I distribution, we have conducted a number of idealized tracer experiments with the OGCM, including tracers mimicking pure water masses, and instantaneous pulse releases. New insight into time-scales of tracer transport in this region is obtained by utilizing a few recently developed methods based on the theory of Transit Time Distribution (TTD) and age of tracers. Implications for other types of “anomalies” in the northern North Atlantic Ocean, being anomalous hydrography or chemical tracers, and how they are interpreted, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldahan A, Alfimov V, Possnert G (2007) 129I anthropogenic budget: major sources and sinks. Appl Geochem 22: 606–618

    Article  CAS  Google Scholar 

  2. Alfimov V, Aldahan A, Possnert G (2004a) Tracing water masses with 129I in the western Nordic Seas in early spring 2002. Geophys Res Lett 31: L19305.1–L19305.4

    Article  Google Scholar 

  3. Alfimov V, Aldahan A, Possnert G, Winsor P (2004b) Anthropogenic Iodine-129 in seawater along a transect from the Norwegian Coastal Current to the North Pole. Mar Pollut Bull 49: 1097–1104

    Article  CAS  Google Scholar 

  4. AMAP (2004) Amap Assessment 2002: radioactivity in the Arctic. Technical report, Oslo, Norway

  5. Bentsen M, Evensen G, Drange H, Jenkins A (1999) Coordinate transforming on a sphere using conformal mapping. Mon Weather Rev 127: 2733–2740

    Article  Google Scholar 

  6. Bleck R, Smith LT (1990) A wind-driven isopycnic coordinate model of the North and Equatorial Atlantic Ocean. 1. Model development and supporting experiments. J Geophys Res 95(C3): 3273–3285

    Article  Google Scholar 

  7. Bleck R, Rooth C, Hu D, Smith L (1992) Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J Phys Oceanogr 22: 1486–1515

    Article  Google Scholar 

  8. Cooper L, Beasley T, Aagaard K, Kelley J, Larsen I, Grebmeier M (1999) Distribution of nuclear fuel reprocessing tracers in the Arctic Ocean: indication of Russian river influence. J Mar Res 57: 715–738

    Article  CAS  Google Scholar 

  9. de Szoeke RA (2000) Equations of motion using thermodynamic coordinates. J Phys Oceanogr 30: 2814–2829

    Article  Google Scholar 

  10. Deleersnijder E, Campin J, Delehez E (2001) The concept of age in marine modelling I. Theory and preliminary model results. J Mar Syst 28: 229–267

    Article  Google Scholar 

  11. Delhez E, Deleersnijder E (2002) The concept of age in marine modelling II. Concentration distribution function in the English Channel and the North Sea. J Mar Syst 31: 279–297

    Article  Google Scholar 

  12. Dickson R, Meincke J, Malmberg S, Lee A (1988) The “Great Salinity Anomaly” in the Northern North Atlantic 1968-1982. Prog Oceanogr 20: 103–151

    Article  Google Scholar 

  13. Drange H, Simonsen K (1996) Formulation of air-sea fluxes in the ESOP2 version of MICOM. Technical report no. 125, Nansen Environmental and Remote Sensing Center, Bergen, Norway

  14. Dukowicz J, Baumgardner J (2000) Incremental remapping as a transport/advection algorithm. J Comput Phys 160: 318–335

    Article  Google Scholar 

  15. Dutay J, Bullister J, Doney S, Orr J, Najjar R, Caldeira K, Campin J, Drange H, Follows M, Gao Y, Gruber N, Hecht M, Ishida A, Joos F, Lindsay K, Madec G, Maier-Reimer E, Marshall J, Matear R, Monfray P, Mouchet A, Plattner G, Sarmiento J, Schlitzer R, Slater R, Totterdell I, Weirig M, Yamanaka Y, Yool A (2002) Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models. Ocean Model 4: 89–120

    Article  Google Scholar 

  16. England M, Maier-Reimer E (2001) Using chemical tracers to assess ocean models. Rev Geophys 39: 29–70

    Article  CAS  Google Scholar 

  17. Gao Y, Drange H, Bentsen M (2003) Effects of diapycnal and isopycnal mixing on the ventilation of CFCs in the North Atlantic in an isopycnic coordinate OGCM. Tellus 55B: 837–854

    CAS  Google Scholar 

  18. Gao Y, Drange H, Bentsen M, Johannessen O (2004) Simulating transport of non-Chernobyl 137Cs and 90Sr in the North Atlantic-Arctic region. J Environ Radioact 71: 1–16

    Article  CAS  Google Scholar 

  19. Gascard JC, Raisbeck G, Sequeira S, Yiou F, Mork KA (2004) The Norwegian Atlantic Current in the Lofoten Basin inferred from hydrological and tracer data (129I) and its interaction with the Norwegian Coastal Current. Geophys Res Lett 31(1): L01308.1–L01308.5

    Article  Google Scholar 

  20. Getzlaff K, Böning C, Deng J (2006) Lagrangian perspectives on deep water export from the Subpolar North Atlantic. Geophys Res Lett 33: L21S08

    Article  Google Scholar 

  21. Haine T, Hall T (2002) A generalized transport theory: water-mass composition and age. J Phys Oceanogr 32: 1932–1946

    Article  Google Scholar 

  22. Haine T, Zhang H, Waugh D, Holzer M (2008) On transit-time distributions in unsteady circulation models. Ocean Model 21: 35–45

    Article  Google Scholar 

  23. Hall T, Haine T (2002) On ocean transport diagnostics: the idealized age tracer and the age spectrum. J Phys Oceanogr 32: 1987–1991

    Article  Google Scholar 

  24. Harder M (1996) Dynamik, Rauhigkeit und Alter des Meereises in der Arktis. Ph.D. thesis, Alfred Wegener Institutt fur Polar- und Meeresforschung, Bremerhaven, Germany

  25. Hibler W (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9: 815–846

    Article  Google Scholar 

  26. Holzer M, Hall T (2000) Transit-time and tracer-age distribution in geophysical flows. J Atmos Sci 57: 3539–3558

    Article  Google Scholar 

  27. Janjić ZI (1977) Pressure gradient force and advection scheme used for forecasting with steep and small scale topography. Beitr Phys Atmos 50: 186–199

    Google Scholar 

  28. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3): 437–471

    Article  Google Scholar 

  29. Karcher M, Gerland S, Harms I, Iosjpe M, Heldal H, Kershaw P, Sickel M (2004) The dispersion of 99Tc in the Nordic Seas and the Arctic Ocean: a comparison of model results and observations. J Environ Radioact 74: 185–198

    Article  CAS  Google Scholar 

  30. Karcher M, Kauker F, Gerdes R, Zhang J (2007) On the dynamics of Atlantic Water circulation in the Arctic Ocean. J Geophys Res 112: C04S02

    Article  Google Scholar 

  31. Köhl A, Käse R, Stammer D (2007) Causes of changes in the Denmark Strait overflow. J Phys Oceanogr 37: 1678–1696

    Article  Google Scholar 

  32. Macrander A, Send U, Valdimarsson H, Jonsson S, Käse R (2005) Interannual changes in the overflow from the Nordic Seas into the Atlantic Ocean through Denmark Strait. Geophys Res Lett 32: L06606.1–L06606.4

    Article  Google Scholar 

  33. McDougall TJ, Dewar WK (1998) Vertical mixing and cabbeling in layered models. J Phys Oceanogr 28: 1458–1480

    Article  Google Scholar 

  34. McDougall TJ, Jackett DR (2005) An assessment of orthobaric density in the global ocean. J Phys Oceanogr 35: 2054–2075

    Article  Google Scholar 

  35. Messias M, Watson A, Johannessen T, Oliver K, Olsson K, Fogelqvist E, Olafsson J, Bacon S, Balle J, Bergman N, Budeus G, Danielsen M, Gascard J, Jeansson E, Olafsdottir S, Simonsen K, Tanhua T, Scoy V, Ledwell J (2008) The Greenland Sea tracer experiment 1996-2002: horzontal mixing and transport of Greenland Sea Intermediate Water. Prog Oceanogr 78(1): 85–105

    Article  Google Scholar 

  36. Orre S, Gao Y, Drange H, Nilsen J (2007) A reassessment of the dispersion properties of 99Tc in the North Sea and the Norwegian Sea. J Mar Syst 68: 24–38

    Article  Google Scholar 

  37. Raisbeck G, Yiou F (1999) 129I in the oceans: origins and applications. Sci Total Environ 237: 31–41

    Article  Google Scholar 

  38. Rhein M, Fischer J, Smethie W, Smythe-Wright D, Weiss C, Mertens D, Fleischmann U, Putzka A (2002) Labrador Sea Water: pathways, CFC inventory and formation rates. J Phys Oceanogr 32: 648–665

    Article  Google Scholar 

  39. Rudels B, Jones E, Anderson L, Kattner G (1994) On the intermediate depth waters of the Arctic Ocean. In: Johannessen OM, Muench RD, Overland JE (eds) The Polar Oceans and their role in shaping the global environment. AGU Geophysical Monographs, Washington, pp 33–46

    Google Scholar 

  40. Schott F, Brandt P (2007) Circulation and deep water export of the subpolar North Atlantic during the 1990s. In: Schmittner A, Chiang JCH, Hemming SR (eds) Ocean circulation: mechanisms and impacts. AGU Monograph, Washington, pp 91–118

    Google Scholar 

  41. Smith J, Ellis K, Kilius L (1998) 129I and 137Cs tracer measurements in the Arctic Ocean. Deep Sea Res 45: 959–984

    Article  CAS  Google Scholar 

  42. Smith J, Ellis K, Boyd T (1999) Circulation features in the central Arctic Ocean revealed by nuclear fuel reprocessing tracers from Scientific Ice Expeditions 1995 and 1996. J Geophys Res 104(C12): 29663–29677

    Article  CAS  Google Scholar 

  43. Smith J, Jones E, Moran S, Smethie W Jr, Kieser W (2005) Iodine 129/CFC 11 transit times for Denmark Strait Overflow Water in the Labrador and Irminger Seas. J Geophys Res 110: C05006.1–C05006.16

    Article  Google Scholar 

  44. Spall M, Price J (1998) Mesoscale variability in the Denmark Strait: the PV outflow hypothesis. J Phys Oceanogr 28: 1598–1623

    Article  Google Scholar 

  45. Sundby S, Drinkwater K (2007) On the mechanisms behind salinity anomaly signals of the northern North Atlantic. Prog Oceanogr 73: 190–202

    Article  Google Scholar 

  46. Wadley M, Bigg G (2006) Are “Great Salinity Anomaly” advective. J Clim 19: 1080–1088

    Article  Google Scholar 

  47. Waugh D, Hall T, Haine T (2003) Relationships among tracer ages. J Geophys Res 108(C5): 3138

    Article  Google Scholar 

  48. Waugh D, Haine T, Hall T (2004) Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean. Deep Sea Res I 51: 1475–1491

    CAS  Google Scholar 

  49. Yang J (2005) The Arctic and Subarctic flux of potential vorticity and the Arctic Ocean circulation. J Phys Oceanogr 35: 2387–2407

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steinar Orre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orre, S., Smith, J.N., Alfimov, V. et al. Simulating transport of 129I and idealized tracers in the northern North Atlantic Ocean. Environ Fluid Mech 10, 213–233 (2010). https://doi.org/10.1007/s10652-009-9138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-009-9138-3

Keywords

Navigation