Skip to main content
Log in

Epistemology and networking theories

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

A theoretical reflection on epistemology is presented. The important role of epistemological analysis in research in mathematics education is discussed. I analyze the epistemological evolution as a consequence of the changes in the mathematical culture and demonstrate how the epistemological analysis is tightly linked to the cultural dimension. Then I analyze the connection between epistemology and networking of theories. Different meanings of the word “epistemic” are observed as well as the role of epistemology in the networking of theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artigue, M. (1990). Épistémologie et didactique. Recherches en Didactique des Mathématiques, 10(23), 241–286.

    Google Scholar 

  • Artigue, M. (1995). The role of epistemology in the analysis of teaching/learning relationships in mathematics education. In Y. M. Pothier (Ed.), Proceedings of the 1995 annual meeting of the Canadian Mathematics Education Study Group (pp. 7–21). Ontario: University of Western Ontario.

    Google Scholar 

  • Artigue, M. (2010). The future of teaching and learning mathematics with digital technologies. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology – Rethinking the terrain. The 17th ICMI Study (pp. 463–476). New York, NY: Springer.

    Google Scholar 

  • Artigue, M., Bartolini-Bussi, M., Dreyfus, T., Gray, E., & Prediger, S. (2006). Different theoretical perspectives and approaches in research in mathematics education. In M. Bosch (Ed.), Proceedings of the 4th Congress of the European Society for Research in Mathematics Education (pp. 1239–1244). Barcelona: Fundemi IQS.

    Google Scholar 

  • Artigue, M., Haspekian, M., & Corblin-Lenfant, A. (2014). An introduction to the theory of didactical situations. In A. Bikner-Ahsbahs & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 47–65). New York, NY: Springer.

  • Artigue, M., & Mariotti, M. A. (2014). Networking theoretical frames: The ReMath enterprise. In J.-B. Lagrange & C. Kynigos (Eds.), Educational Studies in Mathematics, 85(3), 329–355.

  • Bikner-Ahsbahs, A., & Halversheid, S. (2014). An introduction to the theory of interest-dense situations. In A. Bikner-Ahsbahs & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 97–113). New York, NY: Springer.

  • Bingolbali, E., & Monaghan, J. (2008). Concept image revisited. Educational Studies in Mathematics, 68, 19–35.

    Article  Google Scholar 

  • Borwein, D., Borwein, J. M., & Straub, A. (2012). A sinc that sank. American Mathematical Monthly, 119(7), 535–549.

  • Bosch, M., & Gascón, J. (2014). An introduction to the anthropological theory of the didactic. In A. Bikner-Ahsbahs & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 67–83). New York, NY: Springer.

  • Brousseau, G. (1997). Theory of didactical situations in mathematics: Didactique des Mathématiques, 1970–1990 (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Ed. & Trans.). Dordrecht: Kluwer.

  • Ernest, P. (1999). Forms of knowledge in mathematics and mathematics education: Philosophical and rhetorical perspectives. Educational Studies in Mathematics, 38, 67–83.

    Article  Google Scholar 

  • Fischbein, E., Tirosh, D., & Hess, P. (1979). The intuition of infinity. Educational Studies in Mathematics, 10, 3–40.

    Article  Google Scholar 

  • Hershkowitz, R., Schwarz, B., & Dreyfus, T. (2001). Abstraction in context: Epistemic actions. Journal for Research in Mathematics Education, 32(2), 195–222.

    Article  Google Scholar 

  • Kidron, I. (2008). Abstraction and consolidation of the limit procept by means of instrumented schemes: The complementary role of three different frameworks. Educational Studies in Mathematics, 69(3), 197–216.

    Article  Google Scholar 

  • Kidron, I. (2014). Teaching and learning calculus. In S. Lerman (Ed.) Encyclopedia of Mathematics Education (pp.69–75). Dordrecht: Springer-Verlag.

  • Kidron, I. (2015). Is small, small enough? Students’ understanding the need for the definition of the derivative as a limit. International Journal for Technology in Mathematics Education, 22(1), 31–41.

    Google Scholar 

  • Kidron, I., Artigue, M., Bosch, M., Dreyfus, T., & Haspekian, M. (2014). Context, milieu and media-milieus dialectic: A case study on networking of AiC, TDS, and ATD. In A. Bikner-Ahsbahs & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 153–177). New York: Springer.

  • Kidron, I., Bikner-Ahsbahs, A., Monaghan, J., Radford, L., & Sensevy, G. (2011). Different theoretical perspectives and approaches in research in mathematics education. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the 7th conference of the European Society for Research in Mathematics Education (pp. 2377–2380). Rzeszow: ERME.

    Google Scholar 

  • Kidron, I., Bosch, M., Monaghan, J., & Radford, L. (2013). Different theoretical perspectives and approaches in research in mathematics education. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the 8th Congress of the European Society for Research in Mathematics Education (pp. 2785–2789). Antalya, Turkey: ERME.

    Google Scholar 

  • Kidron, I., Lenfant, A., Artigue, M., Bikner-Ahsbahs, A., & Dreyfus, T. (2008). Toward networking three theoretical approaches: The case of social interactions. Zentralblatt für Didaktik der Mathematik - The International Journal on Mathematics Education, 40(2), 247–264.

  • Kidron, I., & Monaghan, J. (2009). Commentary on the chapters on the construction of knowledge. In B. B. Schwarz, T. Dreyfus, & R. Hershkowitz (Eds.), Transformation of knowledge through classroom interaction (pp. 81–90). London, UK: Routledge.

    Google Scholar 

  • Lagrange, J.-B., & Kynigos, C. (2014). Digital technologies to teach and learn mathematics: Context and re-contextualization. In J.-B. Lagrange & C. Kynigos (Eds.), Educational Studies in Mathematics, 85(3), 381–403.

  • Lester, F. (2005). The place of theory in mathematics education research. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 172–178). Melbourne, Australia: PME.

    Google Scholar 

  • Nardi, E. (2006). Mathematicians and conceptual frameworks in mathematics education…or: Why do mathematicians’ eyes glint at the sight of concept image/concept definition? In A. Simpson (Ed.), Retirement as process and concept - A festschrift for Eddie Gray and David Tall (pp. 181–189). Prague, Czech Republic: Charles University.

    Google Scholar 

  • Peitgen, H. O., Jürgens, H., & Saupe, D. (1992). Fractals for the classroom, Part 2. New York, NY: Springer.

    Book  Google Scholar 

  • Radford, L. (1997). On psychology, historical epistemology, and the teaching of mathematics: Towards a socio-cultural history of mathematics. For the Learning of Mathematics, 17(1), 26–33.

    Google Scholar 

  • Radford, L. (2008a). Connecting theories in mathematics education: Challenges and possibilities. Zentralblatt für Didaktik der Mathematik - The International Journal on Mathematics Education, 40(2), 317–327.

  • Radford, L. (2008b). Culture and cognition: Towards an anthropology of mathematical thinking. In L. English (Ed.), Handbook of International Research in Mathematics Education (2nd ed., pp. 439–464). New York, NY: Routledge, Taylor and Francis.

  • Radford, L. (2012). On the cognitive, epistemic, and ontological roles of artifacts. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources (pp. 238–288). New York, NY: Springer.

  • Radford, L. (2015). Epistemology as a research category in mathematics teaching and learning. To appear in B.R. Hodgson, A. Kuzniak and J.-B. Lagrange (Eds.), The didactics of mathematics: Approaches and issues. A hommage to Michèle Artigue. New York, NY: Springer.

  • Ruiz-Munzón, N., Bosch, M., & Gascón, J. (2013). Comparing approaches through a reference epistemological model: The case of algebra. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the 8th Congress of the European Society for Research in Mathematics Education (pp. 2870–2879). Antalya, Turkey: ERME.

    Google Scholar 

  • Schneider, M. (2011). Actes du séminaire national de didactique des mathématiques 2011. “Epistémologie et didactique” (M. Artigue, 1990) : 30 ans après. p. 31–36. IREM de Paris, Association pour la Recherche en Didactique des Mathématiques (ARDM)), Paris.

  • Schneider, M. (2013). Epistemological obstacles in mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 214–217). Dordrecht: Springer-Verlag.

  • Schwarz, B. B., Dreyfus, T., & Hershkowitz, R. (2009). The nested epistemic actions model for abstraction in context. In B. B. Schwarz, T. Dreyfus, & R. Hershkowitz (Eds.), Transformation of knowledge through classroom interaction (pp. 11–41). London: Routledge.

    Google Scholar 

  • Sierpinska, A. (1985). Obstacles épistémologiques relatifs à la notion de limite [Epistemological obstacles relating to the concept of limit]. Recherches en Didactique des Mathematiques, 6(1), 5–67.

    Google Scholar 

  • Sierpinska, A. (1989). Sur un programme de recherche lié à la notion d’obstacle épistémologique. In N. Bednarz & C. Garnier (Eds.), Construction des savoirs (pp. 130–147). Ottawa: Agence d’Arc Inc.

    Google Scholar 

  • Sriraman, B., & English, L. (Eds.). (2010). Theories of mathematics education: Seeking new frontiers. Heidelberg: Springer.

    Google Scholar 

  • Tall, D. (1992). The transition to advanced mathematical thinking: Functions, limits, infinity and proof. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 495–511). New York, NY: Macmillan.

    Google Scholar 

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limit and continuity. Educational Studies in Mathematics, 12, 151–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivy Kidron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kidron, I. Epistemology and networking theories. Educ Stud Math 91, 149–163 (2016). https://doi.org/10.1007/s10649-015-9666-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-015-9666-3

Keywords

Navigation