Skip to main content
Log in

Acute ecotoxicological effects of Hg(CN)2 in Danio rerio (zebrafish)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Artisanal and small-scale gold mining (ASGM) is the largest source of anthropogenic Hg emissions on the planet. In addition, Hg-contaminated tailings are often reprocessed with sodium cyanide (NaCN) to extract the residual gold remaining in the material. This leads to the formation of mercury cyanide (Hg(CN)2) complexes, which are often discharged in untreated form into local drainages, leading to large amounts of free cyanide being released. However, data on mercury-cyanide interactions are scarce. In this study, we investigated the impact of cyanide and Hg bioavailability in zebrafish when added as Hg(CN)2. Different concentrations of Hg(CN)2 and NaCN were used, leading to an LC50 of 0.53 mg.L−1 for NaCN and 0.16 mg.L−1 for Hg(CN)2. Analyzing free cyanide concentrations in aquarium water, >40% dissociation was observed for NaCN and about 5% for Hg(CN)2. The accumulation of total Hg (THg) in the brain, gills, muscle and kidney was quantified. All fish exposed to Hg(CN)2 had higher THg levels than their controls and kidney was the tissue with higher Hg(CN)2 accumulation. Histological effects on the kidney and gills of both cyanides in D. rerio tissues were investigated, suggesting renal alterations in fish exposed to Hg(CN)2 and showing hyperplasia in the gills of animals exposed to NaCN and Hg(CN)2. The results alert to the risks of the presence of these complexes in aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ABNT (2016) NBR 15088. Ecotoxicologia aquática: toxicidade aguda - método de ensaio com peixes. Brazil, Rio de Janeiro.

  • Alfonso P, Anticoi H, Yubero T, Bascompta M, Henao L, Garcia-Valles M, Palacios S, Yańez J (2019) The importance of mineralogical knowledge in the sustainability of artisanal gold mining: a Mid-South Peru case. Minerals 9(6):345. https://doi.org/10.3390/min9060345

    Article  CAS  Google Scholar 

  • AMAP-Arctic Monitoring & Assessment Programme, UN Environment Programme (2019) technical background report for the global mercury assessment 2018 technical report electronic annex. UNEP/AMAP. https://www.amap.no/documents/ downl oad/3411/online.

  • Anseeuw K, Delvau N, Burillo-Putze G, De Iaco F, Geldner G, Holmström P, Sabbe M (2013) Cyanide poisoning by fire smoke inhalation. Eur J Emerg Med 20(1):2–9. https://doi.org/10.1097/mej.0b013e328357170b

    Article  Google Scholar 

  • Bastos WR, Malm O, Pfeiffer WC, Cleary D (1998) Establishment and analytical quality control of laboratories for Hg determination in biological and geological samples in the Amazon. Brazil Technical Rev Ciênc Cult 50:255–260

    CAS  Google Scholar 

  • Bose-O’reilly S, Lettmeier B, Gothe RM, Beinhoff C, Siebert U, Drasch G (2008) Mercury as a serious health hazard for children in gold mining areas. Environ Res 107:89–97. https://doi.org/10.1016/j.envres.2008.01.009

    Article  CAS  Google Scholar 

  • Von Burg R (1995) Inorganic mercury. J Appl Toxicol 15(6):483–493

    Article  Google Scholar 

  • Van Buuren KJH, Nicholls P, Van Gelder BF (1972) Biochemical and biophysical cytochrome aa3. VI. Reaction of cyanide with oxidized and reduced enzyme. Biochim Biophys Acta Bioenergetics 256:258–276

    Article  Google Scholar 

  • Chen CY, Driscoll CT, Lambert KF, Mason RP, Sunderland EM (2016) Connecting mercury science to policy: from sources to seafood. Environ Health Rev 31(1):17–20. https://doi.org/10.1515/reveh-2015-0044

    Article  CAS  Google Scholar 

  • CONAMA, Conselho Nacional Do Meio Ambiente. Resolução N°430, de 13 de maio de 2011. Diário oficial da União, Brasília - Brazil.

  • Cowal Gold Operations (2018) Cyanide Management Plan 2018, Document ID: 00842690

  • da Silva ETL, Pedreira MM, Dias MLF, Gomes MVT, Soares MA, Pedreira RSF, Schorer M (2021) Mercury chloride toxicity in juveniles Prochilodus argenteus a species from southeastern Brazil. Environ Sci Pollut Res 12–17. https://doi.org/10.1007/s11356-021-17205-y

  • Donato DB, Nichols O, Possingham H, Moore M, Ricci PF, Noller BN (2007) A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Environ Int 33(7):974–984. https://doi.org/10.1016/j.envint.2007.04.007

  • Drace K, Kiefer AM, Veiga MM (2016) Cyanidation of mercury-contaminated tailings: potential health effects and environmental justice. Curr Environ Health Rep 3:443–449. https://doi.org/10.1007/s40572-016-0113-0

    Article  CAS  Google Scholar 

  • Dube PN, Hosetti BB (2011) Inhibition of ATPase activity in the freshwater fish Labeo rohita (Hamilton) exposed to sodium cyanide. Toxicol Mech Methods 21(8):591–595. https://doi.org/10.3109/15376516.2011.585430

    Article  CAS  Google Scholar 

  • Eisler R, Wiemeyer SN (2004) Cyanide Hazards to Plants and Animals from Gold Mining and Related Water Issues. Rev Environ Contam Toxicol 21–54. https://doi.org/10.1007/978-1-4419-9100-3_2

  • Flynn CM, Mcgill Haslem S (1995) Cyanide Chemistry- Precious Metals Processing and Waste Treatment, Information Circular 9429. The National Institute for Occupational Safety and Health (NIOSH), Washington, DC

    Google Scholar 

  • Gonçalves AO, Marshall BG, Kaplan RJ, Moreno-Chavez J, Veiga MM (2017) Evidence of decreased mercury loss and increased use of cyanidation at processing centers in southern Ecuador. J Clean Prod 165:836–845. https://doi.org/10.1016/j.jclepro.2017.07.097

    Article  CAS  Google Scholar 

  • Guimarães JRD, Betancourt O, Miranda MR, Barriga R, Cueva E, Betancourt S (2011) Long-range effect of cyanide on mercury methylation in a gold mining area in Southern Ecuador. Sci Total Environ 409(23):5026–5033. https://doi.org/10.1016/j.scitotenv.2011.08.021

    Article  CAS  Google Scholar 

  • Hamilton WJ (1822) An account of the fishes found in the river Ganges and its branches. Edinburgh New Philos J 13(26):337-369

  • Hanusa TP (2006) Cyanide complexes of the transition metals. In encyclopedia of inorganic chemistry; John Wiley & Sons, Hoboken, New Jersey, 125–132

  • Hossein TN, Reza R (2011) Some biochemical properties of rhodanese from liver of rainbow trout International. Conf Med, Biolog, Pharmaceutical Sciences, Pattaya. https://doi.org/10.1100/2012/648085.

  • Krisnayanti BD, Anderson CWN, Utomo WH, Feng H, Handayanto X, Mudarisna E, Ikram N, Khususiah H (2012) Assessment of environmental mercury discharge at a four-year-old artisanal gold mining area on Lombok Island, Indonesia. J Environ Monit 14(10):2598–2607. https://doi.org/10.1039/C2EM30515A

    Article  CAS  Google Scholar 

  • Kuyucak N, Akcil A (2013) Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner Eng 50–51:13–29. https://doi.org/10.1016/j.mineng.2013.05.027

    Article  CAS  Google Scholar 

  • Macirella R, Brunelli E (2017) Morphofunctional alterations in zebrafish (Danio rerio) gills after exposure to mercury chloride. Int J Mol Sci 13 18(4):824. https://doi.org/10.3390/ijms18040824.

    Article  Google Scholar 

  • Marhold JV (1972) Proceedings of the toxixological examination of substances and preparation. Prague, Czechoslovakia: Institut Prumyclu, (in Czechoslovakian), 13.

  • Marsden J, House I (2006) The chemistry of gold extraction, 2nd ed., society for mining, metallurgy, and exploration, littleton.

  • Marshall BG, Veiga MM, Kaplan RJ, Miserendino RA, Schudel G, Berquist B, Guimarães JRD, Gonzalez-Mueller C (2018) Evidence of transboundary mercury and other pollutants in the puyango-tumbes river basin. Ecuador-Peru. Environ Sci: Process Impacts 20:638–641. https://doi.org/10.1039/C7EM00504K

    Article  Google Scholar 

  • Massey V, Edmondson D (1970) On the mechanism of inactivation of xanthine oxidase by cyanide. J Biol Chem 245:6595–6598

    Article  CAS  Google Scholar 

  • Misra M, Lorengo J, Nanor JB, Bucknam CB (1998) Removal of mercury cyanide species from solutions using dimethyl dithiocarbamates. Miner Metall Process 15(4):60–64

    CAS  Google Scholar 

  • Mudder TI, Botz MM (2001) Recovery and reuse. TI Mudder & MM Botz. Mining Jounal Books Inglaterra. Londres 3:201

    Google Scholar 

  • Ramzy EM (2014) Toxicity and stability of sodium cyanide in fresh water fish Nile tilapia. Water Sci 28(1):42–50. https://doi.org/10.1016/j.wsj.2014.09.002

    Article  Google Scholar 

  • Razanamahandry LC, Andrianisa HA, Karoui H, Podgorski J, Yacouba H (2018) Prediction model for cyanide soil pollution in artisanal gold mining area by using logistic regression. Catena 162:40–50. https://doi.org/10.1016/j.catena.2017.11.018

    Article  CAS  Google Scholar 

  • Sari MM, Inoue T, Matsumoto Y, Yokota K (2016) Measuring total mercury due to small-scale gold mining activities to determine community vulnerability in Cihonje, Central Java, Indonesia. Water Sci Technol 73(2):437–444. https://doi.org/10.2166/wst.2015.503. PMID: 26819400

    Article  CAS  Google Scholar 

  • Seccatore J, Veiga M, Origliasso C, Marin T, De Tomi G (2014) An estimation of the artisanal small-scale production of gold in the world. Sci Total Environ 496:662–667. https://doi.org/10.1016/j.scitotenv.2014.05.003

    Article  CAS  Google Scholar 

  • Seney CS, Bridges CC, Aljic S, Moore ME, Orr SE, Barnes MC, Joshee L, Uchakina ON, Bellott BJ, Mckallip RJ, Drace K, Veiga MM, Kiefer AM (2020) Reaction of cyanide with Hg0-contaminated gold mining tailings produces soluble mercuric cyanide complexes. Chem Res Toxicol. https://doi.org/10.1021/acs.chemrestox.0c00211

  • Shandro JA, Veiga MM, Chouinard R (2009) Reducing mercury pollution from artisanal gold mining in Munhena, Mozambique. J Clean Prod 17(5):525–532. https://doi.org/10.1016/j.jclepro.2008.09.005

    Article  CAS  Google Scholar 

  • Shaw SA, Al TA, Macquarrie KTB (2006) Mercury mobility in unsaturated gold mine tailings, Murray Brook mine, New Brunswick, Canada. J Appl Geochem 21:1986–1998. https://doi.org/10.1016/j.apgeochem.2006.08.009

    Article  CAS  Google Scholar 

  • Spiegel SJ, Veiga MM (2010) International guidelines on mercury management in small-scale gold mining. J Clean Prod 18(4):375–385. https://doi.org/10.1016/j.jclepro.2009.10.020

    Article  CAS  Google Scholar 

  • Sterner RT (1979) Effects of sodium cyanide and diphacinone in coyotes (canis latrans): applications as predacides in livestock toxic collars. Bull Environ Contam Toxicol 23:211–217. https://doi.org/10.1595/205651315x689487

    Article  CAS  Google Scholar 

  • Stevens JG (2015) Selective removal of mercury from gold bearing streams. Johnson Matthey Technol. Rev 59(4):322–330. https://doi.org/10.1595/205651315x689487

    Article  Google Scholar 

  • Tarras-Wahlberg NH, Flachier A, Lane SN, Sangfors O (2001) Environmental impacts and metal exposure of aquatic ecosystems in rivers contaminated by small scale gold mining: the Puyango River basin, Southern Ecuador. Sci Total Environ 278:239–261. https://doi.org/10.1016/s0048-9697(01)00655-6

    Article  CAS  Google Scholar 

  • Telmer KH, Veiga MM (2009) World emissions of mercury from artisanal and small-scale gold mining. In Mercury Fate and Transport in the Global Atmosphere (Mason, R., and Pirrone, N., Eds.). Springer US: New York, 131−172.

  • Tsang VWL, Lockhart K, Spiegel SJ, Yassi A (2019) Occupational health programs for artisanal and small-scale gold mining: a systematic review for the WHO Global Plan of Action for Workers’ Health. Ann Glob Health 85(1):128. https://doi.org/10.5334/aogh.2592

    Article  Google Scholar 

  • Veiga MM, Angeloci-Santos G, Meech JA (2014b) Review of barriers to reduce mercury use in artisanal gold mining. Extr Ind Soc 1(2):351–361

    Google Scholar 

  • Veiga MM, Angeloci G, Hitch M, Velasquez-Lopez PC (2014a) Processing centres in artisanal gold mining. J Clean Prod 64:535–544. https://doi.org/10.1016/j.jclepro.2013.08.015

    Article  CAS  Google Scholar 

  • Veiga MM, Bermudez D, Pacheco-Ferreira H, Pedroso LRM, Gunson AJ, Berrios G, Vos L, Huidobro P, Roeser M (2005) Mercury Pollution from Artisanal Gold Mining in Block B, El Callao, Bolívar State, Venezuela. In: Dynamics of Mercury Pollution on Regional and Global Scales, Atmospheric Processes and Human Exposures around the World. Pirrone, N., Mahaffey, K.R. (Eds). Springer US: Norwell, 421–450.

  • Veiga MM, Masson P, Perron D, Laflamme AC, Gagnon R, Jimenez G, Marshall BG (2018) An Affordable Solution For Micro-Miners in Colombia to Process Gold Ores without Mercury. J Cleaner Prod 205:995–1005. https://doi.org/10.1016/j.jclepro.2018.09.039

  • Velasquez-Lopez PC, Veiga MM, Klein B, Shandro JA, Hall K (2011) Cyanidation of mercury-rich tailings in artisanal and small-scale gold mining: identifying strategies to manage environmental risks in Southern Ecuador. J Cleaner Prod 19(9−10):1125–1133. https://doi.org/10.1016/j.jclepro.2010.09.008

    Article  CAS  Google Scholar 

  • Yoshimura A, Suemasu K, Veiga MM (2021) Estimation of mercury losses and gold production by artisanal and small-scale gold mining (ASGM) in selected countries. J Sustain Metall 7:1045–1059. https://doi.org/10.1007/s40831-021-00394-8

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for supporting this research through the research scholarships. We also thank Dr. Marco Antonio Siqueira Rodrigues of Universidade Feevale for his collaboration.

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for supporting this research through the research scholarships.

Author information

Authors and Affiliations

Authors

Contributions

HAMS: conceptualization, methodology, visualization, data curation, writing. DK: methodology, data curation. BGM: conceptualization, methodology, writing. MMV: conceptualization, methodology, writing. JRDG: conceptualization, methodology, writing.

Corresponding author

Correspondence to Henrique Alencar Meira da Silva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, H.A.M., Kasper, D., Marshall, B.G. et al. Acute ecotoxicological effects of Hg(CN)2 in Danio rerio (zebrafish). Ecotoxicology 32, 429–437 (2023). https://doi.org/10.1007/s10646-023-02651-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-023-02651-w

Keywords

Navigation