Skip to main content
Log in

Polycyclic aromatic hydrocarbons (PAHs) in sediments from a typical urban impacted river: application of a comprehensive risk assessment

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Soweto and Lenasia, the most densely populated area of South Africa, is simultaneously a thriving metropolis, with a fair share of people still living in squalor conditions directly dependant on the natural resources. Because of industrialisation the populace and environment in this urban area are exposed to various pollutants. The aquatic environment was selected as a proxy to study the effect of industrial pollution in this area. The concentrations, source identification, and various environmental risks of polycyclic aromatic hydrocarbons (PAHs) were determined in sediments of the upper reaches of the Klip River. Composite sediment samples collected in low-flow conditions in 2013 and 2014 ranged from 270–5400 ng/g. The PAHs in this aquatic ecosystem were dominated by 4-ring congeners and could be attributed to combustion of organic fuels by chemical mass balance. Heavy traffic and industrial complexes in the northern part of the study area were responsible for the PAH fingerprints. Probable adverse effects such as toxicity to benthic biota were proven after comparison with international sediment quality guidelines (SQG) both survey years. Toxic equivalence quotients (TEQs) calculated for the sediments using fish potency factors (FPFs) were up to 30 times greater than the Canadian guideline for dioxin-like compounds, indicating high probability of carcinogenic effect to fish mediated through the aryl-hydrocarbon receptor. Finally, sediments in the area posed moderate to high ecological risk, which corroborates the other toxicity assessments. The advantage of investigating multiple risk endpoints, is the comprehensive results obtained that allows for a more realistic representation of the study area. Consequently more aspects are kept into account that results in better conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal T, Khillare PS, Shridhar V (2006) PAHs contamination in bank sediment of Yamuna River, Dehli, India. Environ Monit Assess 123:151–166

    Article  CAS  Google Scholar 

  • Barata C, Calbet A, Saiz E, Ortiz L, Bayona JM (2005) Predicting single and mixture toxicity of petrogenic polycyclic aromatic hydrocarbons to the copepod Oithona davisae. Environ Toxicol Chem 24:2992–2999

    Article  CAS  Google Scholar 

  • Barron MG, Heintz R, Rice SD (2004) Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish. Mar Environ Res 58:95–100

    Article  CAS  Google Scholar 

  • Baumard P, Budzinski H, Michon Q, Garrigues P, Burgeot T, Belloq J (1998) Origin and bioavailability of PAHs from mussel and sediment records. Estuar Coast Shelf Sci 47:77–90

    Article  CAS  Google Scholar 

  • Bogdal C, Bucheli TD, Agarwal T, Anselmetti FS, Blum F, Hungerbühler K, Kohler M et al. (2011) Contrasting temporal trends and relationships of total organic carbon, black carbon, and polycyclic aromatic hydrocarbons in rural low-altitude and remote high-altitude lakes. J Environ Monit 13:1316–1326

    Article  CAS  Google Scholar 

  • BRICS Joint statistical publication (2014) Brazil, Russia, India, China, South Africa/ IBGE. Rio De Janeiro: IBGE, p 212

  • BRICS (2017) Information about BRICS. http://brics.itamaraty.gov.br/about-brics/information-about-brics. Accessed 3 Feb 2017

  • Budzinski H, Jones I, Bellocq J, Piérard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58:85–97

    Article  CAS  Google Scholar 

  • Bzdusek PA, Christensen ER, Li A, Zou Q (2004) Source apportionment of sediment PAHs in Lake Calumet, Chicago: application of factor analysis with nonnegative constraints. Environ Sci Technol 38:97–103

    Article  CAS  Google Scholar 

  • Cao Z, Liu J, Lua Y, Li Y, Ma M, Xu J, Han S (2010) Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China. Ecotoxicology 19:827–837

    Article  CAS  Google Scholar 

  • CCME, Canadian Council of Ministries of the Environment (1999) Canadian sediment quality guidelines for the protection of aquatic life. Polycyclic aromatic hydrocarbons (PAHs). http://ceqg-rcqe.ccme.ca/download/en/243. Accessed 22 Aug 2016

  • CCME, Canadian Council of Ministries of the Environment (2001) Canadian sediment quality guidelines for the protection of aquatic life. Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans (PCDD/Fs). http://ceqg-rcqe.ccme.ca/download/en/245. Accessed 22 Aug 2016

  • CCME, Canadian Council of Ministries of the Environment (2012). Canadian sediment quality guidelines for the protection of aquatic life. Protocol for the derivation of Canadian sediment quality guidelines for the protection of aquatic life. http://ceqg-rcqe.ccme.ca/download/en/226. Accessed 22 Aug 2016

  • Chen B, Xuan X, Zhu L, Wang J, Gao Y, Yang K, Shen X, Lou B (2004) Distribution of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Res 38:3558–3568

    Article  CAS  Google Scholar 

  • Chen C, Chen C (2011) Distribution, origin and potential toxicological significance of PAHs in sediments of Kaohsiung harbour, Taiwan. Mar Poll Bull 63:417–423

    Article  CAS  Google Scholar 

  • Clements WH, Oris JT, Wissing TE (1994) Accumulation and food chain transfer of fluoranthene and benzo[a]pyrene in Chironomus riparius and Lepomis macrochirus. Arch Environ Contam Toxicol 26:261–266

    Article  CAS  Google Scholar 

  • Culotta L, De Stefano C, Gianguzza A, Mannino MR, Orecchio S (2006) The PAH composition of surface sediments from Stagnone coastal lagoon, Marsala (Italy). Mar Chem 99:117–127

    Article  CAS  Google Scholar 

  • Di Torro DM, McGarth JA (2000) Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. II. Mixtures Sediment Environ Toxicol Chem 19:1971–1982

    Article  Google Scholar 

  • Dickhut RM, Caneul EA, Gustafson KE, Liu K, Arzayus KM, Walker SE, Edgecombe G, Gaylor et al. (2000) Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environ Sci Technol 34:4635–4640

    Article  CAS  Google Scholar 

  • Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334

    Article  CAS  Google Scholar 

  • Douglas GS, Emsbo-Mattingly SD, Stout SA, Uhler AD, McCarthy KJ (2007) Chemical fingerprinting methods. In: Murphy BL, Morisson RD (eds) Introduction to environmental forensics, 2nd edn. Academic, New York, pp 311–454

    Chapter  Google Scholar 

  • Dudhagara DR, Rajpara RK, Bhatt JK, Gosai HB, Sachaniya BK, Dave BP (2016) Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environ Pollut 213:338–346

    Article  CAS  Google Scholar 

  • DWAS, Department of Water Affairs and Sanitation (2004) Upper Vaal Water Management Area: Internal Strategic Perspective. https://www.dwaf.gov.za/Documents/Other/WMA/Upper_Vaal_ISP.pdf. Accessed 12 Oct 2016

  • Finch BE, Marzooghi S, Di Torro DM, Stubblefield WA (2017) Evaluation of the phototoxicity of unsubstituted and alkylated polycyclic aromatic hydrocarbons to mysid shrimp (Americamysis bahia): Validation of predictive models. Environ Toxicol Chem 36:2043–2049

    Article  CAS  Google Scholar 

  • Garner TR, Weinstein JE, Sanger DM (2009) Polycyclic aromatic hydrocarbon contamination in South Carolina salt marsh-tidal creek systems: relationships among sediments, biota, and watershed land use. Arch Environ Contam Toxicol 57:103–115

    Article  CAS  Google Scholar 

  • Gaspare L, Machiwa JF, Mdachi SJM, Streck G, Brack (2009) Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dar es Salaam, Tanzania. Environ Pollut 157:24–34

    Article  CAS  Google Scholar 

  • Gehle K (2009) U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry: Toxicity of polycyclic aromatic hydrocarbons (PAHs). http://www.atsdr.cdc.gov/csem/pah/docs/pah.pdf. Accessed 22 Sep 2016

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • He X, Pang Y, Song X, Chen B, Feng Z, Ma Y (2014) Distribution sources and ecological risk assessment of PAHs in surface sediments from Guan River estuary, China. Mar Poll Bull 80:52–58

    Article  CAS  Google Scholar 

  • ISO, International Organization for Standardization (2002) ISO 14688-1: 2002–Geotechnicalinvestigation and testing—Identification and classification of soil—Part 1: Identification and description

  • Jones RJ (2011) Spatial patterns of chemical contamination (metals, PAHs, PCBs, PCDDs/PCDFs) in sediments of a non-industrialized but densely populated coral atoll/small island state (Bermuda). Mar Poll Bull 62:1362–1376

    Article  CAS  Google Scholar 

  • Karlsson K, Viklander M (2008) Polycyclic aromatic hydrocarbons (PAH) in water and sediment from gully pots. Water Air Soil Pollut 188:271–282

    Article  CAS  Google Scholar 

  • Kim K-H, Jahan SA, Kabir E, RJC Brown (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–81

    Article  CAS  Google Scholar 

  • Kralik M (1999) A rapid procedure for environmental sampling and evaluation of polluted sediments. Appl Geochem 14:807–816

    Article  CAS  Google Scholar 

  • Li A, Jang J-K, Scheff PA (2003) Application of EPA CMB82 model for source apportionment of sediment PAHs in Lake Calumet, Chicago. Environ Sci Technol 37:2958–2965

    Article  CAS  Google Scholar 

  • Li J, Dong H, Zhang D, Han B, Zhu C, Liu S, Liu X et al. (2015) Sources and ecological risk assessment of PAHs in surface sediments from Bohai Sea and northern part of the Yellow Sea, China. Mar Poll Bull 96:485–490

    Article  CAS  Google Scholar 

  • Li CK, Kamens RM (1993) The use of polycyclic aromatic hydrocarbons as source signatures in receptor modelling. Atmos Environ 27A:523–532

    Article  CAS  Google Scholar 

  • Li H, Ran Y (2012) Distribution and bioconcentration of polycyclic aromatic hydrocarbons in surface water and fishes. Sci World J 2012:632910. https://doi.org/10.1100/2012/632910

    Google Scholar 

  • Liu Y, Chen L, Huang Q, Li W, Tang Y, Zhao J (2009) Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Huangpu River, Shanghai, China. Sci Total Environ 407:2931–2938

    Article  CAS  Google Scholar 

  • Lu M, Zeng DC, Liao Y, Tong B (2012) Distribution and characterization of organochlorine pesticides and polycyclic aromatic hydrocarbons in surface sediment from Poyang Lake, China. Sci Total Environ 433:491–497

    Article  CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  Google Scholar 

  • Malik A, Singh KP, Mohan D, Patel DK (2004) Distribution of polycyclic aromatic hydrocarbons in Gomti River system, India. Bull Environ Contam Toxicol 72:1211–1218

    Article  CAS  Google Scholar 

  • Malik RN, Mehboob F, Ali U, Katsoyiannis A, Schuster JK, Moeckel C, Jones KC (2014) Organo-halogenated contaminants (OHCs) in the sediments from the Soan River, Pakistan: OHCs(adsorbed TOC) burial flux, status and risk assessment. Sci Total Environ 481:343–351

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach B, Smreczak B, Klimkowicz-Pawlas A (2009) Concentrations, sources, and spatial distribution of individual polycyclic aromatic (PAHs) in agricultural soils in the Eastern part of the EU: Poland as a case study. Sci Total Environ 407:3746–3753

    Article  CAS  Google Scholar 

  • McCarthy TS, Venter JS (2006) Increasing pollution levels on the Witwatersrand recorded in the peat deposits of the Klip River wetland. S Afr J Sci 102:27–34

    CAS  Google Scholar 

  • Meador JP, Stein JE, Reichert WL, Varanasi U (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ Contam T 143:79–165

    CAS  Google Scholar 

  • Miller JN, Miller JC (2010) Statistics and chemometrics for analytical chemistry, 6th edn. Prentice Hall, Harlow, England

    Google Scholar 

  • Moja SJ, Mtunzi F, Madlanga X (2013) Determination of polycyclic aromatic hydrocarbons (PAHs) in river water samples from the Vaal Triangle area in South Africa. J Environ Sci Health A Tox Hazard Subst Environ Eng 48:847–854

    Article  CAS  Google Scholar 

  • Myers MS, Landahl JT, Krahn MM, McCain BB (1991) Relationships between hepatic neoplasms and related lesions and exposure to toxic chemicals in marine fish from the U.S. west coast. Environ Health Perspect 90:7–15

    Article  CAS  Google Scholar 

  • Myers MS, Stehr CM, Olson OP, Johnson LL, McCain BB, Chain SL, Varanasi U (1994) Relationships between toxicopathic hepatic-lesions and exposure to chemical contaminants in English sole (Pleuronectes ventulus), starry flounder (Platichthys stellatus), and white croaker (Genyonemus lineatus) from selected marine sites on the Pacific coast, USA. Environ Health Perspect 102:200–215

    Article  CAS  Google Scholar 

  • Naicker D, Myburgh JG, Botha CJ (2007) Establishment and validation of primary hepatocytes of African sharptooth catfish (Clarias gariepinus). Chemosphere 68:69–77

    Article  CAS  Google Scholar 

  • Neff JM (1979) Polycyclic aromatic hydrocarbons in the aquatic environment: Sources, fate and biological effects. Applied Science Publishers, Ltd., Essex, England

    Google Scholar 

  • Neff JM, Stout SA, Gunster DG (2005) Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: Identifying sources and ecological hazard. Integr Environ Assess Manag 1:22–33

    Article  CAS  Google Scholar 

  • Nieuwoudt C, Pieters R, Quinn LP, Kylin H, Borgen AR, Bouwman H (2011) Polycyclic aromatic hydrocarbons (PAHs) in soil and sediment from industrial, residential and agricultural areas in central South Africa: an initial assessment. Soil Sediment Contam 20:188–204

    Article  CAS  Google Scholar 

  • Pies C, Hoffmann B, Petrowsky J, Yang Y, Ternes TA, Hofmann T (2008) Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 72:1594–1601

    Article  CAS  Google Scholar 

  • Qiao M, Wang C, Huang S, Wang D, Wang Z (2006) Composition, sources, and potential toxicological significance of PAHs in the surface sediments of Meiliang Bay, Taihu Lake, China. Environ Int 32:28–33

    Article  CAS  Google Scholar 

  • Quinn L, Pieters R, Nieuwoudt C, Borgen AR, Kylin H, Bouwman H (2009) Distribution profiles of selected organic pollutants in soils and sediments of industrial, residential and agricultural areas of South Africa. J Environ Monit 11:1647–1657

    Article  CAS  Google Scholar 

  • Roos C, Pieters R, Genthe B, Bouwman H (2012) Persistent organic pollutants in the water environment. Water Research Commission Report no K5/1561, Pretoria, South Africa.

  • Raza M, Zakaria MP, Hashim NR, Yim UH, Kannan N, Ha SY (2013) Composition and source identification of polycyclic aromatic hydrocarbons in mangrove sediments in Peninsular Malaysia: indication of anthropogenic input. Environ Earth Sci 70:2425–2436

    Article  CAS  Google Scholar 

  • Savinov VM, Savinov TN, Carroll J, Matishov GG, Dahle S, Næs K (2000) Polycyclic aromatic hydrocarbons (PAHs) in sediments of the White Sea, Russia. Mar Poll Bull 40:807–818

    Article  CAS  Google Scholar 

  • Savinov VM, Savinov TN, Matishov GG, Dahle S, Næs K (2003) Polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs) in bottom sediments of the Guba Pechenga, Barents Sea, Russia. Sci Total Environ 306:39–56

    Article  CAS  Google Scholar 

  • Schirmer K, Dixon DG, Breenberg BM, Bols NC (1998) Ability of priority 16 PAHs to be directly cytotoxic to a cell line from the rainbow trout gill. Toxicology 127:129–141

    Article  CAS  Google Scholar 

  • Shirapova GS, Utyuzhnikova NS, Rabina OA, Vyalkov AI, Morozov SV, Batoev VB (2013) Contamination of Lake Baikal Basin with polyaromatic hydrocarbons: the Gusinoye Lake. CSD 21:179–185

    Google Scholar 

  • Sims RC, Overcash MR (1983) Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. Residue Rev 88:1–68

    CAS  Google Scholar 

  • Stark A, Abrajano T, Hellou J, Metcalf-Smith JL (2003) Molecular and isotopic characterization of polycyclic aromatic hydrocarbon distribution and sources at the international segment of the St. Lawrence River. Org Geochem 34:225–237

    Article  CAS  Google Scholar 

  • StatsSA, Statistics South Africa (2011) Statistics by place. http://www.statssa.gov.za/?page_id=993&id=city-of-johannesburg-municipality. Accessed 2 Nov 2016

  • StatsSA, Statistics South Africa (2016) Household service delivery statistics. www.statssa.gov.za/?page_id=739&id=2. Accessed 15 Feb 2017

  • Stogiannidis E, Laane R (2015) Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. In: Whitacre DM (ed) Reviews of Environmental Contamination and Toxicology, Vol 234, pp 49–133

  • Su M-C, Christensen ER, Karls JF, Kosuru S, Imamoglu I (2000) Apportionment of polycyclic aromatic hydrocarbon sources in the lower Fox River, USA, sediments by chemical mass balance model. Environ Toxicol Chem 19:1481–1490

    Article  CAS  Google Scholar 

  • Suares-Rocha P, Azab E, Schmidt B, Storch V, Hollert H, Braunbech T (2010) Changes in toxicity and dioxin-like activity of sediments from the Tietê River (São Paulo, Brazil). Ecotox Environ Safe 73:550–558

    Article  CAS  Google Scholar 

  • Torres JPM, Malm O, Vieira EDR, Japenga J, Koopmans GF (2002) Organic micropollutants on river sediments from Rio de Janeiro State, South Brazil. Cad De Saude Publica 18:477–488

    Article  Google Scholar 

  • Torres-Duque C, Maldonando D, Pérez-Padilla R, Ezzati M, Veigi G (2008) Biomass fuels and respiratory disease. Proc Am Thorac Soc 5:577–590

    Article  Google Scholar 

  • USEPA (1994) Method 1613 Tetra- through octa-chlorinated dioxins and furans by isotope dilution HRGC/HRMS. EPA/821/B-94-005. U.S. Environmental Protection Agency, Office ofWater, Washington, D.C.

  • USEPA (1996) Method 3630C silica gel cleanup. Test methods for evaluating solid waste, physical/chemical methods: SW-846. U.S. Environmental Protection Agency, Office of Solid Waste, Washington, D.C.

  • USEPA (2007) Method 3620C Florisil cleanup. Test methods for evaluating solid waste, physical/chemical methods: SW-846. U.S. Environmental Protection Agency, Office of Solid Waste, Washington, D.C.

  • Van den Berg ML, Birnbaum L, Bosveld BTC, Brunström B, Cook P, Feeley M, Giesy JP et al. (1998) Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 106:775–792

    Article  Google Scholar 

  • Van Metre PC, Mahler BJ, Furlong ET (2000) Urban sprawl leaves it’s PAH signature. Environ Sci Technol 34:4064–4070

    Article  Google Scholar 

  • Vethaak AD, Jol JG, Meiboom A, Eggens ML, Reinallt T, Wester PW, van der Zande T et al. (1996) Skin and liver diseases induced in flounder (Platichthys flesus) after long-term exposure to contaminated sediments in large-scale mesocosms. Environ Health Perspect 104:1218–1229

    Article  CAS  Google Scholar 

  • Villeneuve DL, Khim JS, Kannan K, Giesy JP (2002) Relative potencies of individual polycyclic aromatic hydrocarbons to induce dioxin-like and estrogenic responses in three cell lines. Environ Toxicol 17:128–137

    Article  CAS  Google Scholar 

  • Wang H, Cheng Z, Liang P, Shao D, Kang Y, Wu S, Wong CK, Wong MH (2010) Characterization of PAHs in surface sediments of aquaculture farms around the Pearl River delta. Ecotox Environ Safe 73:900–906

    Article  CAS  Google Scholar 

  • Wang Z, Fingas M, Sigouin L (2001) Characterization and identification of a “mystery” oil spill from Quebec (1999). J Chromatogr A 909:155–169

    Article  CAS  Google Scholar 

  • Wang Z, Fingas M, Shu YY, Sigouin L, Landriault M, Lambert P, Turpin R, Campagna P, Mullin J (1999) Quantitative characterization of PAHs in burn residue and soot samples and the differentiation of pyrogenic PAHs from petrogenic PAHs – the 1994 mobile burn study. Environ Sci Technol 33:3100–3109

    Article  CAS  Google Scholar 

  • Wepener V, Van Dyk C, Bervoets L, O’Brien G, Covaci A, Cloete Y (2011) An assessment of the influence of multiple stressors on the Vaal River, South Africa. Phys Chem Earth 36:949–962

    Article  Google Scholar 

  • Wu B, Zhang R, Chen SP, Ford T, Li AM, Zhang XX (2011) Risk assessment of polycyclic aromatic hydrocarbons in aquatic ecosystems. Ecotoxicology 20:1124–1130

    Article  CAS  Google Scholar 

  • Xu J, Yu Y, Wang P, Guo W, Dai S, Sun H (2007) Polycyclic aromatic hydrocarbons in the surface sediments from Yellow River, China. Chemosphere 67:1408–1414

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River Basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:189–515

    Article  Google Scholar 

  • Zheng B, Wang L, Lei K, Nan B (2016) Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particle matter and sediment from Daliao River estuary and the adjacent area, China. Chemosphere 149:91–100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the valuable comments of the reviewers and the editor that lead to the improvement of the manuscript.

Funding

This study was funded by the Water Research Commission of South Africa (WRC, K2/2242/1/16), and the National Research Foundation (Innovation student bursary SF1208219521, and Grant No. 103487). Opinions expressed and conclusions arrived at are those of the authors only, and are not necessarily to be attributed to the NRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wihan Pheiffer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or vertebrate animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pheiffer, W., Quinn, L.P., Bouwman, H. et al. Polycyclic aromatic hydrocarbons (PAHs) in sediments from a typical urban impacted river: application of a comprehensive risk assessment. Ecotoxicology 27, 336–351 (2018). https://doi.org/10.1007/s10646-018-1898-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-018-1898-4

Keywords

Navigation