Skip to main content
Log in

Genetic structuring of the moss Pseudoscleropodium purum sampled at different distances from a pollution source

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

In this study, we used amplified fragment length polymorphism analysis to investigate the genetic structure of the terrestrial moss Pseudoscleropodium purum (Hedw.) M. Fleish. naturally exposed to different levels of atmospheric deposition of heavy metals. We also determined the heavy metal concentrations in samples of this moss to evaluate whether there was a relationship between atmospheric pollution and population genetic diversity. A low level of genetic diversity and a limited gene flow among populations were observed which is in accordance to the prevalence of asexual reproduction in this species. In addition, no significant correlation was found between metal content and gene diversity in P. purum, probably because of the common history of the sampled populations and/or to the lack of a drastic reduction of the size of the population; nonetheless, a clear genetic structure was evident in relation to the existing pollution gradient. Thus, based on the results of the principal coordinate analysis and Bayesian analysis of the genotypes, the mixed structure of the second most polluted population would suggest an ongoing differentiation of metal-tolerant genotypes in the most polluted sites of the sampling area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bargagli R (1998) Trace elements in terrestrial plants. An ecophysiological approach to biomonitoring and biorecovery. Bargagli R. (ed) Springer, Berlin and Heidelberg, Germany; New York

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  CAS  Google Scholar 

  • Boquete MT, Fernández JA, Carballeira A, Aboal JR (2013) Assessing the tolerance of terrestrial moss Pseudoscleropodium purum to high levels of atmospheric heavy metals: a reciprocal transplant study. Sci Tot Environ 461-462:552–559. doi:10.1016/j.scitotenv.2013.05.039

    Article  CAS  Google Scholar 

  • Briggs D (1972) Population differentiation in Marchantia polymorpha L. in various lead pollution levels. Nature 238:166–167. doi:10.1038/238166a0

    Article  CAS  Google Scholar 

  • Brown DH, House KL (1978) Evidence of a copper-tolerant ecotype of the hepatic Solenostoma crenulatum. Ann Bot-London 42:383–1392

    Google Scholar 

  • Brown DH, Wells JM (1990) Physiological effects of heavy metals on the moss Rhytidiadelphus squarrosus. Ann Bot-London 66:641–647

    CAS  Google Scholar 

  • Carballeira A, Couto JA, Fernández JA (2002) Estimation of background levels of various elements in terrestrial mosses from Galicia (NW of Spain). Water Air Soil Poll 133:235–252. doi:10.1023/A:1012928518633

    Article  CAS  Google Scholar 

  • Choudhury S, Panda SK (2005) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr) broth. under chromium and lead phytotoxicity. Water Air Soil Poll 167:73–90. doi:10.1007/s11270-005-8682-9

    Article  CAS  Google Scholar 

  • Crespo Pardo D, Terracciano S, Giordano S, Spagnuolo V (2014) Molecular markers based on PCR methods: a guideline for mosses. Cryptogam Briol 35(3):229–246. doi:10.7872/cryb.v35.iss3.2014.229

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fernández CC, Shevock JR, Glazer AN, Thompson JN (2006) Cryptic species within the cosmopolitan desiccation-tolerant moss Grimia laevigata. Evolution 103:637–642. doi:10.1073/pnas.0510267103

    Google Scholar 

  • Fernández JA, Aboal JR, Real C, Carballeira A (2007) A new moss biomonitoring method for detecting sources of small scale pollution. Atmos Environ 41:2098–2110. doi:10.1016/j.atmosenv.2006.10.072

    Article  Google Scholar 

  • Folkeson L (1979) Changes in the cover of mosses and lichens in coniferous woodland polluted with copper and zinc. In: Hytteborn H (ed) The use of ecological variables in environmental monitoring, Proceedings of the First Nordic Oikos Conference, 1978, Uppsala, Sweden, pp. 59–61

  • Frankham R, Ballou JD, Briscoe DA (2004) A primer of conservation genetics. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Fritz S (2009) Vegetative reproduction and clonal diversity in pleurocarpous mosses (Bryophytina) of mesic habitats. A combined molecular and morpho-anatomical study in Pseudoscleropodium purum (Hedw.) M. Fleisch. ex Broth. (Brachytheciaceae), Pleurozium schreberi (Brid.) Mitt. (Hylocomiaceae) and Rhytidiadelphus squarrosus (Hedw.) Warnst. (Hylocomiaceae). Dissertation, Freien Universität, Berlin

  • Hoffmann AA, Willi Y (2008) Detecting genetic responses to environmental change. Nature Rev Genet 9:420–432. doi:10.1038/nrg2339

    Article  Google Scholar 

  • Hofman M (2007) The effect of genetic diversity on evolutionary potential. Local adaptation in the natterajck toad Bufo calamita in Sweden. Dissertation, Uppsala University

  • Huttunen S (2003) Reproduction of the mosses Pleurozium schreberi and Polia nutans in the surroundings of copper smelters at Harjavalta, S.W. Finland. J Bryol 25:41–47. doi:10.1179/037366803125002644

    Article  Google Scholar 

  • Jensen J.L., Bohonak A.J., Kelley S.T. (2005) Isolation by distance, web service. BMC Genetics 6: 13. V.3.23. http://ibdws.sdsu.edu/. Accessed 15 July 2015

  • Jules ES, Shaw AJ (1994) Adaptation to metal-contaminated soils in populations of the moss, Ceratodon purpureus: vegetative growth and reproductive expression. Am J Bot 81:791–797. doi:10.2307/2445660

    Article  Google Scholar 

  • Kimmerer RW (1991) Reproductive ecology of Tetraphis pellucida. II. Differential success of sexual and asexual propagules. Bryologist 94:284–288. doi:10.2307/3243966

    Article  Google Scholar 

  • Kimmerer RW (1994) Ecological consequences of sexual versus asexual reproduction in Dicranum flagellare and Tetraphis pellucida. Bryologist 97:20–25. doi:10.2307/3243344

    Article  Google Scholar 

  • King TJ (2003) Mosses and aspect; why is Scleropodium purum abundant on the north-facing sides of ant-hills? J Bryol 25:211–213. doi:10.1179/037366803235001689

    Article  Google Scholar 

  • Korpelainen H, von Cräutlein M, Kostamo K, Virtanen V (2013) Spatial genetic structure of aquatic bryophytes in a connected lake system. Plant Biology 15:514–521. doi:10.1111/j.1438-8677.2012.00660.x

    Article  CAS  Google Scholar 

  • Longton RE, Schuster RM (1983) Reproductive biology. In: Schuster RM (ed) New manual of bryology, vol 1. Hattori Botanical Laboratory, Nichinan, Japan, pp 386–462

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99. doi:10.1111/j.1365-294X.1994.tb00109.x

    Article  CAS  Google Scholar 

  • Nei M (1972) Genetic distances between populations. Ame Nat 106:283–292

    Article  Google Scholar 

  • Nowak C (2008) Consequences of environmental pollution on genetic diversity in populations of the midge Chironomus riparius. Dissertation, Johann Wolfgang Goethe-Universität

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460

    Article  CAS  Google Scholar 

  • Pfeiffer T, Fritz S, Stech M, Frey W (2006) Vegetative reproduction and clonal diversity in Rhytidium rugosum (Rhytidiaceae, Bryopsida) inferred by morpho-anatomical and molecular analyses. J Plant Res 119:125–135. doi:10.1007/s10265-005-0255-x

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959. doi:10.1111/j.1471-8286.2007.01758.x

    CAS  Google Scholar 

  • Reynolds JB, Weir S, Cockerham CC (1983) Estimation of the co-ancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779

    CAS  Google Scholar 

  • Richardson DHS, Nieboer E, Lavoie P, Padovan D (1979) The role of metal-ion binding in modifying the toxic effects of sulphur dioxide on the lichen Umbilicaria muhlenbergii. II. 14C fixation studies. New Phytol 82:633–643. doi:10.1111/j.1469-8137.1979.tb01658.x

    Article  CAS  Google Scholar 

  • Shacklette HT (1967) Copper mosses as indicators of metal concentrations. Geol Surv Bull 1198:G1–G17

  • Shaw AJ, Antonovics J, Anderson LE (1987) Inter-and intra-specific variation of mosses in tolerance to copper and zinc. Evolution 41:1312–1325

    Article  CAS  Google Scholar 

  • Shaw AJ (1988) Genetic variation for tolerance to copper and zinc within and among populations of the moss Funaria hygrometrica. New Phytol 109:211–222. doi:10.1111/j.1469-8137.1988.tb03710.x

    Article  CAS  Google Scholar 

  • Shaw AJ (1990) Metal tolerances and co-tolerances in the moss Funaria hygrometrica. Can J Bot 68:2275–2282. doi:10.1139/b90-290

    Article  CAS  Google Scholar 

  • Spagnuolo V, Muscariello L, Terracciano S, Giordano S (2007a) Molecular biodiversity in the moss Leptodon smithii (Neckeraceae) in relation to habitat disturbance and fragmentation. J Plant Res 120:595–604. doi:10.1007/s10265-007-0097-9

    Article  Google Scholar 

  • Spagnuolo V, Muscariello L, Cozzolino S, Castaldo Cobianchi R, Giordano S (2007b) Ubiquitous genetic diversity in ISSR markers between and within populations of the asexually producing moss Pleurochaete squarrosa. Plant Ecol 188:91–101. doi:10.1007/s11258-006-9150-3

    Article  Google Scholar 

  • Spagnuolo V, Terracciano S, Giordano S (2009a) Trace element content and molecular biodiversity in the epiphytic moss Leptodon smithii: two independent tracers of human disturbance. Chemosphere 74:1158–1164. doi:10.1016/j.chemosphere.2008.11.080

    Article  CAS  Google Scholar 

  • Spagnuolo V, Terracciano S, Giordano S (2009b) Clonal diversity and geographic structure in Pleurochaete squarrosa: different sampling scale approach. J Plant Res 122:161–170. doi:10.1007/s10265-008-0206-4

    Article  Google Scholar 

  • Spagnuolo V, Zampella M, Giordano S, Adamo P (2011) Cytological stress and element uptake in moss and lichen exposed in bags in urban area. Ecotox Environ Safe 74:1434–1443. doi:10.1016/j.ecoenv.2011.02.011

    Article  CAS  Google Scholar 

  • Spagnuolo V, De Nicola F, Terracciano S, Bargagli R, Baldantoni D, Monaci F, Alfani A, Giordano S (2014) Persistent pollutants and the patchiness of urban green areas as drivers of genetic richness in the epiphytic moss Leptodon smithii. J Environ Sci 26:2493–2499. doi:10.1016/j.jes.2014.06.036

    Article  Google Scholar 

  • Staton JL, Schizas NV, Chandler GT, Coull BC, Quattro JM (2001) Ecotoxicology and population genetics: The emergence of “Phylogeographic and Evolutionary Ecotoxicology”. Ecotoxicology 10:217–222. doi:10.1023/A:1016617410786

    Article  CAS  Google Scholar 

  • Steinnes E, Rühling Å, Lippo H, Makinen A (1997) Reference materials for large scale metal deposition surveys. Accred. Qual Assur 2:243–249. doi:10.1007/s007690050141

    Article  CAS  Google Scholar 

  • Tremper AH, Agneta M, Burton S, Higgs DEB (2004) Field and laboratory exposures of two moss species to low level metal pollution. J Atmos Chem 49:111–120. doi:10.1007/s10874-004-1218-7

    Article  CAS  Google Scholar 

  • Tuba Z, Saxena DK, Srivastava K, Singh S, Czobel S, Kalaji HM (2010) Chlorophyll a fluorescence measurements for validating the tolerant bryophytes for heavy metal (Pb) biomapping. Curr Sci India 98:1505–1508

    CAS  Google Scholar 

  • Ungherese G, Mengoni A, Somigli S, Baroni D, Focardi S, Ugolini A (2010) Relationship between heavy metals pollution and genetic diversity in Mediterranean populations of the sandhopper Talitrus saltator (Montagu) (Crustacea, Amphipoda). Environ Poll 158:1638–1643. doi:10.1016/j.envpol.2009.12.007

    Article  CAS  Google Scholar 

  • Vanderpoorten A, Tignon M (2000) Amplified fragment length polymorphism between populations of Amblystegium tenax exposed to contrasting water chemistries. J Bryology 22:257–262. doi:10.1179/jbr.2000.22.4.257

    Article  Google Scholar 

  • Van Straalen NM, Timmermans MJTN (2002) Genetic variation in toxicant stressed populations: an evaluation of the “genetic erosion” hypothesis. Hum Ecol Risk Assess 8:983–1002. doi:10.1080/1080-700291905783

    Article  Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium. http://ebe.ulb.ac.be/ebe/AFLP-SURV.html. Accessed 16 April 2015.

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) Nucleic Acids Res 23:4407–4414

    Article  CAS  Google Scholar 

  • Webb DM, Knapp SJ (1990) DNA extraction from a previously recalcitrant plant genus. Plant Mol Biol Rep 8(3):180–185. doi:10.1007/BF02669514

    Article  CAS  Google Scholar 

  • Wells JM, Brown DH (1995) Cadmium tolerance in a metal-contaminated population of the grassland moss Rhytidiadelphus squarrosus. Ann Bot 75:21–29. doi:10.1016/S0305-7364(05)80005-8

    Article  CAS  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  Google Scholar 

Download references

Acknowledgments

The study was partly financed by the FEDER funding; M. T. Boquete is grateful to the Spanish Ministerio de Ciencia e Innovación for a grant awarded within the Programa de Formación de Profesorado Universitario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Teresa Boquete.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boquete, M., Spagnuolo, V., Fernández, J. et al. Genetic structuring of the moss Pseudoscleropodium purum sampled at different distances from a pollution source. Ecotoxicology 25, 1812–1821 (2016). https://doi.org/10.1007/s10646-016-1727-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1727-6

Keywords

Navigation