Skip to main content
Log in

Biochemical and genotoxic response of naphthalene to fingerlings of milkfish Chanos chanos

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The present study investigated the acute toxicity, sub-lethal toxicity and biochemical response of naphthalene in fingerlings of milkfish Chanos chanos. The 96 h acute toxicity LC50 values for C. chanos exposed to naphthalene was 5.18 μg l−1. The estimated no observed effect concentration and lowest observed effect concentration values for naphthalene in C. chanos were 0.42 and 0.69 μg l−1 respectively for 30 days. The estimated maximum allowable toxicant concentration for naphthalene was 0.53 μg l−1. Biochemical enzyme markers such as lipid peroxidation, catalase, glutathione S transferase and reduced glutathione were measured in gills and liver tissues of C. chanos exposed to sub-lethal concentrations of naphthalene. Fluctuation in lipid peroxidation and catalase level suggests that naphthalene concentrations play a vital role in induction of oxidative stress in fish. Induction of reduced glutathione level and inhibition of glutathione S-transferase level was observed in naphthalene exposed C. chanos suggesting that there may be enhanced oxidative damage due to free radicals. Increasing concentration increases in number of nuclear abnormalities. The formation of micronuclei and binucleated micronuclei induction by naphthalene confirm its genotoxic potential. The highest levels of DNA damage (% tail length) were observed at 1.24 μg l−1 of naphthalene. The study suggests that biochemical enzymes, nuclear abnormalities and DNA damage index can serve as a biological marker for naphthalene contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad I, Pacheco M, Santos MA (2004) Enzymatic and nonenzymatic antioxidants as an adaptation to phagocyte-induced damage in Anguilla anguilla L following in situ harbor water exposure. Ecotoxicol Environ Safe 57:290–302

    Article  CAS  Google Scholar 

  • Al-Sabti K (1995) An in vitro binucleated blocked hepatic cell technique for genotoxicity testing in fish. Mutat Res 335:109–120

    Article  CAS  Google Scholar 

  • Anderson DT, Yu W, Phillips BJ (1994) The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the COMET assay. Mutat Res 307:261–271

    Article  CAS  Google Scholar 

  • APHA/AWWA/WEF (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC, p 1220

  • ATSDR (1995) Toxicological profile for polycyclic aromatic hydrocarbons. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA

  • Bagarinao T (1994) Systematics, distribution, genetics and life history of milkfish, Chanos chanos. Environ Biol Fish 39:25–41

    Article  Google Scholar 

  • Bainy ACD, Saito E, Carvalho PSM, Junqueira VBC (1996) Oxidative stress in gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquat Toxicol 34:151–162

    Article  CAS  Google Scholar 

  • Banni M, Bouraoui Z, Ghedira J, Clerandeau C, Guerbej H, Narbonne JF, Boussetta H (2009) Acute effects of benzo (a) pyrene on liver phase I and II enzymes and DNA damage on sea bream Sparus aurata. Fish Physiol Biochem 35:293–299

    Article  CAS  Google Scholar 

  • Beutler E (1982) Catalase. In: Beutler E (ed) Red cell metabolism, a manual of biochemical methods. Grune and Stratton Inc, pp 105–106

  • Broderius SJ, Kahl MD, Hoglund MD (1995) Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals. Environ Toxicol Chem 14:1591–1605

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Meth Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Calbet A, Saiz E, Barata C (2007) Lethal and sublethal effects of naphthalene and 1,2-dimethylnaphthalene on the marine copepod Paracartia grani. Mar Biol 151:195–204

    Article  CAS  Google Scholar 

  • Caliani I, Porcelloni S, Mori G, Frenzilli G, Ferraro M, Marsili L, Casini S, Fossi MC (2009) Genotoxic effects of produced waters in mosquito fish (Gambusia affinis). Ecotoxicology 18:75–80

    Article  CAS  Google Scholar 

  • Cheung CCC, Zheng GJ, Li AMY, Richardson BJ, Lam PKS (2001) Relationships between tissue concentrations of poly-aromatic hydrocarbons and antioxidant responses of marine mussles, Perna virdis. Aquat Toxicol 52:189–203

    Article  CAS  Google Scholar 

  • Danion M, Le Floch S, Kannan R, Lamoura F, Quentel C (2011) Effects of in vivo chronic hydrocarbons pollution on sanitary status and immune system in sea bass (Dicentrarchus labrax L). Aquat Toxicol 105:300–311

    Article  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid–base regulation, and excretion nitrogenous waste. Physiol Rev 85:97–177

    Article  CAS  Google Scholar 

  • Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis. University Press, Great Britain, p 333

    Google Scholar 

  • Gravato C, Santos MN (2002) Juvenile seabass liver P450, EROD induction and erythrocytic genotoxic responses to PAH and PAH like compounds. Ecotox Environ Saf 51:115–127

    Article  CAS  Google Scholar 

  • Guilhermino L, Sobral O, Chastinet C, Ribeiro R, Gonçalves F, Carolina Silva M, Soares AM (1999) A Daphnia magna first-brood chronic test: an alternative to the conventional 21-day chronic bioassay? Ecotoxicol Environ Saf 42: 67–74

    Google Scholar 

  • Habig W, Pabst M, Jakoby W (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Hissin PJ, Hilf RA (1976) Fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  Google Scholar 

  • Hutchinson TH, Shillabeer N, Winter MJ, Pickford DB (2006) Acute and chronic effects of carrier solvents in aquatic organisms: a critical review. Aquat Toxicol 76:69–92

    Article  CAS  Google Scholar 

  • Irwin RJ, VanMouwerik M, Stevens L, Seese MD, Basham W (1997) Environmental contaminants encyclopedia National Park Service. Water Resources Division, Colorado 114 pp

    Google Scholar 

  • Jin X, Zha J, Xu Y, Giesy JP, Wang Z (2012) Toxicity of pentachlorophenol to native aquatic species in the Yangtze River. Environ Sci Pollut Res 19:609–618

    Article  CAS  Google Scholar 

  • Johnson WW, Finley MT (1980) Handbook of acute toxicity for chemicals to fish and aquatic invertebrates United States Department of the Interior Fish and Wildlife service/resource publication, p137

  • Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666

    Article  CAS  Google Scholar 

  • Livingstone DR, Martinez PG, Stegeman JJ, Winston GW (1988) Benzo (a) pyrene metabolism and aspects of oxygen radical generation in the common muscle (Mytilus edulis L). Transac Biochem Soc 16:770–779

    Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Luis LG, Guilhermino L (2012) Short-term toxic effects of naphthalene and pyrene on the common prawn (Palaemon serratus) assessed by a multi-parameter laboratorial approach: mechanisms of toxicity and impairment of individual fitness. Biomarkers 17:275–285

    Article  CAS  Google Scholar 

  • Miliou H, Zaboukas N, Moraitou-Apostolopoulou M (1998) Biochemical composition, growth, and survival of the guppy, Poecilia reticulata, during chronic sublethal exposure to Cadmium. Arch Environ Contam Toxicol 35:58–63

    Article  CAS  Google Scholar 

  • OECD (2002) OECD Guidelines for the testing of chemicals, revised proposal for a new guideline 221. Lemna sp growth inhibition test OECD, Paris

    Book  Google Scholar 

  • Oliva M, Gonzalez deCanales LM, Gravato C, Guilhermino L, Perales JA (2010) Biochemical effects and polycyclic aromatic hydrocarbons (PAHs) in senegal sole (Solea senegalensis) from a Huelva estuary (SWSpain). Ecotoxicol Environ Saf 73:1843–1851

  • Otitoloju A, Olagoke O (2011) Lipid peroxidation and antioxidant defense enzymes in Clarias gariepinusas useful biomarkers for monitoring exposure to polycyclic aromatic hydrocarbons. Environ Monit Assess 182:205–213

    Article  CAS  Google Scholar 

  • Pacheco M, Santos MA (2001) Biotransformation, endocrine and genetic responses of Anguilla anguilla L to petroleum distillate products and environmental contaminated waters. Ecotoxicol Environ Safe 49:64–75

    Article  CAS  Google Scholar 

  • Palanikumar L, Kumaraguru AK, Ramakritinan CM, Anand M (2012a) Biochemical response of anthracene and benzo [a] pyrene in milkfish Chanos chanos. Ecotoxicol Environ Saf 75:85–87

    Article  Google Scholar 

  • Palanikumar L, Kumaraguru AK, Ramakritinan CM, Anand M (2012b) Genotoxic assessment of anthracene and benzo [a] pyrene to milkfish Chanos chanos. Toxicol Environ Chem 94:350–363

    Article  CAS  Google Scholar 

  • Palanikumar L, Kumaraguru AK, Ramakritinan CM, Anand M (2013a) Toxicity, feeding rate and growth rate response to sub-lethal concentrations of anthracene and benzo [a] pyrene in milkfish Chanos chanos (Forskkal). Bull Environ Contam Toxicol 90:60–68

    Article  CAS  Google Scholar 

  • Palanikumar L, Kumaraguru AK, Ramakritinan CM, Anand M (2013b) Toxicity, biochemical and clastogenic response of chlorpyrifos and carbendazim in milkfish Chanos chanos. Int J Environ Sci Technol. doi:10.1007/s13762-013-0264-6

    Google Scholar 

  • Pan LQ, Ren J, Liu J (2006) Responses of antioxidant systems and LPO level to benzo (a) pyrene and benzo (k) fluoranthene in the haemolymph of the Scallop Chlamys Ferrari. Environ Pollut 141:443–451

    Article  CAS  Google Scholar 

  • Parkinson A (2001) Biotransformation of xenobiotics. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons, 6th edn. McGraw-Hill, New York, pp 133–224

  • Pollino CA, Holdway DA (2002) Toxicity testing of crude oil and related compounds using early life stages of the crimson-spotted rainbowfish (Melanotaenia fluviatilis). Ecotoxicol Environ Saf 52:180–189

    Article  CAS  Google Scholar 

  • Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharm 66:1499–1503

    Article  CAS  Google Scholar 

  • Rabanal HR (1988) Development of the aquaculture industry in Southeast Asia pp 3-37 In: JV Juario and LV Benitez (ed) Perspectives in Aquaculture Development in Southeast Asia and Japan, SEAFDEC Aquaculture Department, Tigbauan

  • Ramesh A, Walker SA, Hood DB, Guillen MD, Schneider K, Weynad EH (2004) Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol 23:301–333

    Article  CAS  Google Scholar 

  • Reddy PS, Katyayani RV, Fingerman M (1996) Cadmium and naphthalene-induced hyperglycemia in the fiddler crab, Uca pugilator: differential modes of action on the neuroendocrine system. Bull Environ Contam Toxicol 56:425–431

    Article  CAS  Google Scholar 

  • Santos CA, Ngan PV, de MJ, Passos ACR, Gomes V (2006) Effects of naphthalene on metabolic rate and ammonia excretion of juvenile Florida pompano, Trachinotus carolinus. J Exp Mar Biol Ecol 335:82–90

  • Shi H, Sui Y, Wang XT, Luo Y, Ji L (2005) Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassius auratus. Comp Biochem Physiol C 140:115–121

    Google Scholar 

  • Singh NP, McCoy MT, Tice RR (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. J Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  • Sole M, Porte C, Biosca X, Mithcelmore CL, Chipman JK, Livingstone DR, Albaiges T (1996) Effects of the Aegean Sea oil spill on biotransformation enzymes, oxidative stress and DNA adducts in the digestive glands of the muscle (Mytillus edulis L). Comp Biochem Physiol 113:257–265

    Google Scholar 

  • Sprague JB (1973) The ABCs of pollutant bioassay using fish. In: Cairns J, Dickson DL (eds) Biological methods for assessment of water quality, vol 528. ASTM Special Technical Publication, West Conshohocken, pp 6–30

  • UNESCO (1984) Manual for monitoring oil and dissolved dispersed petroleum hydrocarbons in marine waters and on beaches, Manuals and Guides no 13. IOC-UNESCO, Paris, p 35

    Google Scholar 

  • USEPA ECO Update (1994) Bulletin series on ecological risk assessment of Superfund sites These Bulletins serve as supplements to Risk Assessment Guidance for Superfund, volume II: Environmental Evaluation Manual (EPA/540-1-89/001)

  • USEPA (1985) Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses National Technical Information Service Accession Number PB85-227049. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1990) Dunnett Program Version 15, Probit Program Version 15, and Trimmed spearman-Karber (TSK) Program Version 15. Ecological Monitoring Research Division Environmental Monitoring Systems Laboratory, United States Environ mental Protection Agency, Cincinnati, OH

    Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Safety 64:178–189

    Article  CAS  Google Scholar 

  • Venier P, Maron S, Canova S (1997) Detection of micronuclei in gill cells and haemocytes of mussels exposed to benzo [a] pyrene. Mutat Res 390:33–44

    Article  CAS  Google Scholar 

  • Vieira LR, Sousa A, Frasco MF, Lima I, Morgado F, Guilhermino L (2008) Acute effects of benzo (a) pyrene, anthracene and a fuel oil on biomarkers of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Sci Total Environ 395:87–100

    Article  CAS  Google Scholar 

  • Vijayavel K, Gomathi RD, Durgabhavani K, Balasubramanian MP (2004) Sublethal effect of naphthalene on lipid peroxidation and antioxidant status in the edible marine crab Scylla serrate. Mar Pollut Bull 48:429–433

    Article  CAS  Google Scholar 

  • Vijayavel K, Gopalakrishnan S, Thilagam H, Balasubramanian MP (2006) Dietary ascorbic acid and -tocopherol mitigates oxidative stress induced by copper in the thorn fish Terapon jarbua. Sci Tot Environ 372:157–163

    Article  CAS  Google Scholar 

  • Vincent-Hubert F, Revel M, Garric J (2012) DNA strand breaks detected in embryos of the adult snails, Potamopyrgus antipodarum, and in neonates exposed to genotoxic chemicals. Aqua Toxicol 122–123:1–8

    Article  Google Scholar 

  • Wahidulla S, Rajamanickam YR (2009) Detection of DNA damage in fish Oreochromis mossambicus induced by co-exposure to phenanthrene and nitrite by ESI-MS/MS. Env Sci Poll Res 17:441–452

    Article  Google Scholar 

  • Yadav KK, Trivedi SP (2009) Sublethal exposure of heavy metals induces micronuclei in fish, Channa punctata. Chemosphere 77:1495–1500

    Article  CAS  Google Scholar 

  • Yamano T, Morita S (1995) Effects of pesticides on isolated hepatocytes, mitochondria and microsomes 11. Arch Environ Contam Toxicol 28:1–7

    Article  CAS  Google Scholar 

  • Zhang J, Shen H, Wang X, Wu J, Xue Y (2004) Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55:167–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors sincerely acknowledge the partial financial Grant from Ministry of Earth Science-ICMAM Project Directorate, Chennai, India (reference: MoES/1-CZM/4/2007/dated 29th/31st Oct. 2007). Authors sincerely thank Dr. R. Babu Rajendran, Associate Professor, Department of Environmental Biotechnology, Bharathidasan University, Trichy, India and CECRI, Karaikudi, India for providing GC–MS facilities. One of us Mr. L. Palanikumar thanks Mr. D. Praveen Sam, Teaching Fellow, Department of English, Anna University, Chennai, India for performing language corrections.

Conflict of interset

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Palanikumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palanikumar, L., Kumaraguru, A.K. & Ramakritinan, C.M. Biochemical and genotoxic response of naphthalene to fingerlings of milkfish Chanos chanos . Ecotoxicology 22, 1111–1122 (2013). https://doi.org/10.1007/s10646-013-1098-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-013-1098-1

Keywords

Navigation