Skip to main content

Advertisement

Log in

Mercury, selenium and neurochemical biomarkers in different brain regions of migrating common loons from Lake Erie, Canada

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Common loons (Gavia immer) can be exposed to relatively high levels of dietary methylmercury (MeHg) through fish consumption, and several studies have documented MeHg-associated health effects in this species. To further study the neurological risks of MeHg accumulation, migrating loons dying of Type E botulism were collected opportunistically from the Lake Erie shore at Long Point (Ontario, Canada) and relationships between total mercury (THg), selenium (Se), and selected neurochemical receptors and brain enzymes were investigated. THg concentrations were 1–78 μg/g in liver; and 0.3–4 μg/g in the brain (all concentrations reported on a dry weight basis). A significant (p < 0.05) positive correlation was found between THg in liver and THg in 3 subregions of the brain (cerebral cortex: r = 0.433; cerebellum: r = 0.293; brain stem: r = 0.405). THg varied significantly among different brain regions, with the cortex having the highest concentrations. Se levels in the cortex and cerebellum were 1–29 and 1–10 μg/g, respectively, with no significant differences between regions. Se was not measured in brain stem due to insufficient tissue mass. There were molar excesses of Se over mercury (Hg) in both cortex and cerebellum at all Hg concentrations, and a significant positive relationship between THg and the Hg:Se molar ratio (cortex: r = 0.63; cerebellum: r = 0.47). No significant associations were observed between brain THg and the n-methyl-d-aspartic acid (NMDA) receptor concentration, nor between THg and muscarinic cholinergic (mACh) receptor concentration; however, brain THg levels were lower than in previous studies that reported significant Hg-associated changes in neuroreceptor densities. Together with previous studies, the current findings add to our understanding of Hg distribution in the brain of common loons, and the associations between Hg and sub-lethal neurochemical changes in fish-eating wildlife.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams DH, Sonne C, Basu N, Dietz R, Nam DH, Leifsson PS, Jensen AL (2010) Mercury contamination in spotted seatrout, Cynoscion nebulosus: an assessment of liver, kidney, blood, and nervous system health. Sci Total Environ 408:5808–5816

    Article  CAS  Google Scholar 

  • Albers PH, Koterba MT, Rossman R, Link WA, French JB, Bennett R, Bauer WC (2007) Effects of methylmercury on reproduction in American kestrels. Environ Toxicol and Chem 26:1856–1866

    Article  CAS  Google Scholar 

  • Barr JF (1986) Population dynamics of the common loon (Gavia immer) associated with mercury-contaminated waters in north-western Ontario. Can. Wildl Ser Occasional Paper 56:1–25

    Google Scholar 

  • Basu N, Klenavic K, Gamberg M, O’Brien M, Evans RD, Scheuhammer AM, Chan HM (2005) Effects of mercury on neurochemical receptor binding characteristics in wild mink. Environ Toxicol Chem 24:1444–1450

    Article  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Rouvinen-Watt K, Grochowina N, Klenavic K, Evans RD, Chan HM (2006) Methylmercury impairs components of the cholinergic system in captive mink (Mustela vison). Toxicol Sci 91:202–209

    Article  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Rouvinen-Watt K, Grochowina NM, Evans RD, O’Brien M, Chan HM (2007) Decreased N-methyl-d-aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink. Neurotoxicology 28:587–593

    Article  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Sonne C, Letcher RJ, Born EW, Dietz R (2009) Is dietary mercury of neurotoxicological concern to polar bears (Ursus maritimus)? Environ Toxicol Chem 28:133–140

    Article  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Rouvinen-Watt K, Evans RD, Trudeau VL, Chan HM (2010) In vitro and whole animal evidence that methylmercury disrupts GABAergic systems in discrete brain regions in captive mink. Comp Biochem Physiol Part C 151:379–385

    Google Scholar 

  • Bennett RS, French JB, Rossmann R, Haebler R (2009) Dietary toxicity and accumulation of methylmercury in American kestrels. Arch Environ Contam Toxicol 56:149–156

    Article  CAS  Google Scholar 

  • Burgess NM, Meyer MW (2008) Methylmercury exposure associated with reduced productivity in common loons. Ecotoxicology 17:83–91

    Article  CAS  Google Scholar 

  • D’Agostino RB, Belanger A, D’Agostino RB Jr (1990) A suggestion for using powerful and informative tests of normality. Am Stat 44:316–321

    Article  Google Scholar 

  • Evers DC (2006) Loons as biosentinels of aquatic integrity. Environ Bioindicators 1:18–21

    Google Scholar 

  • Evers DC, Savoy LJ, DeSorbo CR, Yates DE, Hanson W, Taylor KM, Siegel LS, Cooley JH Jr, Bank MS, Major A, Munney K, Mower BF, Vogel HS, Schoch N, Pokras M, Goodale MW, Fair J (2008) Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology 17:69–81

    Article  CAS  Google Scholar 

  • Gagné F, Cejka P, André C, Hausler R, Blaise C (2007) Neurotoxicological effects of a primary and ozonated treated wastewater on freshwater mussels exposed to an experimental flow-through system. Comp Biochem Physiol C Toxicol Pharmacol 146:460–470

    Article  Google Scholar 

  • Hoffman DJ, Eagles-Smith CA, Ackerman JT, Adelsbach TL, Stebbins KR (2011) Oxidative stress response of Forster’s terns (Sterna forsteri) and Caspian terns (Hydroprogne caspia) to mercury and selenium bioaccumulation in liver, kidney, and brain. Environ Toxicol Chem 30:920–929

    Article  CAS  Google Scholar 

  • Kamman NC, Burgess NM, Driscoll CT, Simonin HA, Goodale W, Linehan J, Estabrook R, Hutcheson M, Major A, Scheuhammer AM, Scruton DA (2005) Mercury in freshwater fish of northeast North America: A geographic perspective based on fish tissue monitoring databases. Ecotoxicology 14(1–2):163–180

    Article  CAS  Google Scholar 

  • Kenow KP, Grasman KA, Hines RK, Meyer MW, Gendron-Fitzpatrick A, Spalding MG, Gray BR (2007) Effects of methylmercury exposure on the immune function of juvenile common loons (Gavia immer). Environ Toxicol Chem 26:1460–1469

    Article  CAS  Google Scholar 

  • Kenow KP, Hoffman DJ, Hines RK, Meyer MW, Bickham JW, Matson CW, Stebbins KR, Montagna P, Elfessi A (2008) Effects of methylmercury exposure on glutathione metabolism, oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks. Environ Pollut 156:732–738

    Article  CAS  Google Scholar 

  • Kenow KP, Hines RK, Meyer MW, Suarez SA, Gray BR (2010) Effects of methylmercury exposure on the behavior of captive-reared common loon (Gavia immer) chicks. Ecotoxicology 19:933–944

    Article  CAS  Google Scholar 

  • Nam DH, Adams DH, Flewelling LJ, Basu N (2010) Neurochemical alterations in lemon shark (Negaprion brevirostris) brains in association with brevetoxin exposure. Aquat Toxicol 99:351–359

    Article  CAS  Google Scholar 

  • Neugebauer EA, Sans Cartier GL, Wakeford BJ (2000) Methods for the determination of metals in wildlife tissues using various atomic absorption spectrophotometry techniques. Technical Report Series No. 337E. Canadian Wildlife Service, Environment Canada, Ottawa, Canada

    Google Scholar 

  • Nocera J, Taylor P (1998) In situ behavioural response of common loons associated with elevated mercury exposure. Conserv Ecol 2:10

    Google Scholar 

  • Ralston NV, Ralston CR, Blackwell JL, Raymond LJ (2008) Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology 29:802–811

    Article  CAS  Google Scholar 

  • Rutkiewicz J, Crump D, Scheuhammer AM, Jagla M, Basu N (2010) Investigation of spatial trends and neurochemical impacts of mercury in herring gulls across the laurentian great lakes. Environ Pollut 158:2733–2737

    Article  CAS  Google Scholar 

  • Rutkiewicz J, Nam D-H, Cooley T, Neumann K, Padilla IB, Route W, Strom S, Basu N (2011) Mercury exposure and neurochemical impacts in bald eagles across several Great Lakes states. Ecotoxicology. doi:10.1007/s10646-011-0730-1

  • Scheuhammer AM, Bond D (1991) Factors affecting the determination of total mercury in biological samples by continuous-flow cold vapour atomic absorption spectrophotmetry. Biol Trace Elem Res 31:119–129

    Article  CAS  Google Scholar 

  • Scheuhammer AM, Wong AHK, Bond D (1998) Mercury and selenium accumulation in common loons (Gavia immer) and common mergansers (Mergus merganser) from Eastern Canada. Environ Toxicol Chem 17:197–201

    CAS  Google Scholar 

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–18

    Article  CAS  Google Scholar 

  • Scheuhammer AM, Basu N, Burgess N, Elliott JE, Campbell GD, Wayland M, Champoux L, Rodrigue J (2008) Relationships among mercury, selenium, and neurochemical parameters in common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus). Ecotoxicology 17:93–101

    Article  CAS  Google Scholar 

  • Spalding GM, Frederick PC, McGill HC, Bouton SN, Richey LJ, Schumacher IM, Blackmore CGM, Harrison J (2000) Histologic, neurologic, and immunologic effects of methylmercury in captive great egrets. J Wild Dis 36:423–435

    CAS  Google Scholar 

  • Stamler CJ, Basu N, Chan HM (2005) Biochemical markers of neurotoxicity in wildlife and human populations: considerations for method development. J Toxicol Environ Health A 68(16):1413–1429

    Article  CAS  Google Scholar 

  • Weech SA, Scheuhammer AM, Elliot JE, Cheng KM (2004) Mercury in fish from the Pinchi Lake region, British Columbia, Canada. Environ Pollut 131:275–286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Della Bond and Emily Porter for their excellent technical assistance. Danny Bernard, Paul Ashley, Jeff Robinson, Kerrie Wilcox, Matt Timpf and Craig Hebert contributed to the collection and dissection of the loons used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Scheuhammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, M., Scheuhammer, A. & Basu, N. Mercury, selenium and neurochemical biomarkers in different brain regions of migrating common loons from Lake Erie, Canada. Ecotoxicology 20, 1677–1683 (2011). https://doi.org/10.1007/s10646-011-0754-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0754-6

Keywords

Navigation