Skip to main content
Log in

Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Perennial ryegrass (Lolium perenne L.), widely used in temperate climates, is one of turf grasses that enrich cadmium (Cd). The objective of this study was to explore the physiological responses and candidate gene expression in perennial ryegrass to Cd stress. Grasses were subjected to three levels of 0, 0.2, and 0.5 mM Cd for 7 days in the greenhouse. The results indicated that soluble protein content was lower in the Cd-treated perennial ryegrass compared to untreated plants. The Cd-treated perennial ryegrass exhibited a greater level of malondialdehyde and activity of the peroxidase (POD), catalase, and superoxide dismutase (SOD) relative to the control. The Cd stress induced up-regulated expression of FeSOD, MnSOD, Chl Cu/ZnSOD, Cyt Cu/ZnSOD, APX, GPX, GR and POD at 4–24 h after treatment began for perennial ryegrass. Results suggested that the gene transcript profile was related to the enzyme activity under Cd stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alloways BJ (1990) In: Alloway BJ (ed) Heavy metals in soils. Blackie et Son LTD, USA, pp 100–339

    Google Scholar 

  • Arienzo M, Adamo P, Cozzolino V (2004) The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci Total Environ 319:13–25

    Article  CAS  Google Scholar 

  • Beard JB (2002) Turfgrass management for golf courses, 2nd edn. Wiley, Hoboken, p 793

    Google Scholar 

  • Bian SM, Jiang YW (2009) Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Sci Hortic-Amsterdam 120:264–270

    Article  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate trace metals. CAB International, Wallingford

    Google Scholar 

  • Brunet J, Varrault G, Zuily-Fodil Y, Repellin A (2009) Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere 77:1113–1120

    Article  CAS  Google Scholar 

  • Byrne SL, Durandeau K, Nagy I, Barth S (2010) Identification of ABC transporters from Lolium perenne L. that are regulated by toxic levels of selenium. Planta 231:901–911

    Article  CAS  Google Scholar 

  • Caggiano R, D’Emilio M, Macchiato M, Ragosta M (2005) Heavy metals in ryegrass species versus metal concentrations in atmospheric particulate measured in an industrial area southern Italy. Environ Monit Assess 102:67–84

    Article  CAS  Google Scholar 

  • Chance B, Maehly SK (1955) Assay of catalase and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chen LM, Lin CC, Kao C-H (2000) Copper toxicity in rice seedlings: changes in antioxidative enzymeactivities, H2O2 level, and cell wall peroxidase activity in roots. Bot Bull Acad Sin 41:99–103

    CAS  Google Scholar 

  • Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  CAS  Google Scholar 

  • Chowdhury RS, Choudhuri MA (1985) Hydrogen peroxide metabolism as an index of water stress tolerance in jute. Physiol Plant 65:476–480

    Article  CAS  Google Scholar 

  • Ci DW, Jiang D, Dai TB, Jing Q, Cao WX (2009) Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere 77:1620–1625

    Article  CAS  Google Scholar 

  • Cuypers A, Karen S, Jos R, Kelly O, Els K, Tony R, Nele H, Nathalie V, Suzy VS, Frank VB, Yves G, Jan C, Jaco V (2010) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol. doi:10.1016/j.jplph.2010.07.010

  • Daghan H, Arslan M, Uygur V, Koleli N, Eren A (2010) The cadmium phytoextraction efficiency of SCMTII gene bearing transgenic tobacco plant. Biotechnol Biotechnol Equip 24:1974–1978

    Article  CAS  Google Scholar 

  • de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsolakali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168

    Article  Google Scholar 

  • Deng X, Xia Y, Hu W, Zhang H, Shen Z (2010) Cadmium-induced oxidative damage and protective effects of N-acetyl-l-cysteine against cadmium toxicity in Solanum nigrum L. J Hazard Mater 180:722–729

    Article  CAS  Google Scholar 

  • Dı′az J, Bernal A, Pomar F, Merino F (2001) Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci 161:179–188

    Article  Google Scholar 

  • Foito A, Byrne SL, Shepherd T, Stewart D, Barth S (2009) Transcriptional and metabolic profiles of Lolium perenne L. genotypes in response to a PEG-induced water stress. Plant Biotechnol J 7:719–732

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a reevaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Fu J, Huang B (2001) Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp Bot 45:105–114

    Article  CAS  Google Scholar 

  • Goupil P, Souguir D, Ferjani E, Faure O, Hitmi A, Ledoigt G (2009) Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution. J Plant Physiol 166:1446–1452

    Article  CAS  Google Scholar 

  • Hannaway D, Fransen S, Cropper J, Teel M, Chaney M, Griggs T, Halse R, Hart J, Cheeke P, Hansen D, Klinger R, Lane W. Perennial ryegrass (Lolium perenne L.). In: A pacific northwest extension publication, vol PNW 502. Oregon State University, Washington State University, University of Idaho. 1999

  • Heath RN, Packer H (1968) Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Hiscox TD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissues without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Hoagland C, Arnon D (1950) The solution-culture method for growing plants without soil. Calif Agric Exp Circ 247

  • Lee JM, Roche JR, Donaghy DJ, Thrush A, Sathish P (2010) Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.). BMC Mol Biol 11:1471–2199

    Article  Google Scholar 

  • Liu W, Shu WS, Lan CY (2004) Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin Sci Bull 49:29–32

    CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  CAS  Google Scholar 

  • Milone MT, Cristina S, Clijsters H, Navari-Izzo F (2003) Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ Exp Bot 50:265–276

    Article  CAS  Google Scholar 

  • Pawlak S, Firych A, Rymer K, Deckert J (2009) Cu, Zn-superoxide dismutase is differently regulated by cadmium and lead in roots of soybean seedlings. Acta Physiologiae Plantarum 31:741–747

    Article  CAS  Google Scholar 

  • Polle A, Eiblemeier M, Sheppard L, Murray M (1997) Responses of antioxidative enzymes to evaluated CO2 in leaves of beech (Fagus sylvatica L.) seedlings grownunder a range of nutrient regimes. Plant Cell Environ 20:1317–1321

    Article  CAS  Google Scholar 

  • Reinheckel T, Noack H, Lorenz S, Wiswedel I, Augustin W (1998) Comparison of protein oxidation and aldehyde formation during oxidative stress in isolated mitochondria. Free Radic Res 29:297–305

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Perazzolli M, Zago ED, Delledonne M (2004) Nitric oxide signalling functions in plant-pathogen interactions. Cell Microbiol 6:795–803

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  Google Scholar 

  • Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen per oxide content, and differentiation in Scot Pine roots. Plant Physiol 127:887–898

    Article  CAS  Google Scholar 

  • Shah K, Kumar RG, Verma A, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes ingrowing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–112

    CAS  Google Scholar 

  • Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden SJ, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–3

    Article  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Soleimani M, Hajabbasi MA, Afyuni M, Mirlohi A, Borggaard OK, Holm PE (2010) Effect of Endophytic Fungi on cadmium tolerance and bioaccumulation by Festuca Arundinacea and Festuca Pratensis. Int J Phytoremediation 12:535–549

    Article  CAS  Google Scholar 

  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa—an angiospermic parasite. J Plant Physiol 161:665–674

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) A biological test system for the evaluation of the phytotoxicity of metal-contaminated soils. Environ Pollut 66:157–172

    Article  Google Scholar 

  • Vogel-Mikuš K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  Google Scholar 

  • Vogel-Mikuš K, Regvar M, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Simčič J, Pelicon P, Budnar M (2008) Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol 179:712–721

    Article  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    Article  CAS  Google Scholar 

  • Yamaguchi H, Fukuoka H, Arao T, Ohyama A, Nunome T, Miyatake K, Negoro S (2010) Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum. J Exp Bot 61:423–437

    Article  CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  • Zhang JX, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    CAS  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP, Dong JD (2007) Effect of heavymetal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  CAS  Google Scholar 

  • Zhang FQ, Zhang HX, Wang GP, Xu LL, Shen ZG (2009) Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater 168:76–84

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinmin Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, H., Li, H., Zhang, X. et al. Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology 20, 770–778 (2011). https://doi.org/10.1007/s10646-011-0628-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0628-y

Keywords

Navigation