Skip to main content

Advertisement

Log in

A test battery approach to the ecotoxicological evaluation of cadmium and copper employing a battery of marine bioassays

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Heavy metals are ubiquitous contaminants of the marine environment and can accumulate and persist in sediments. The toxicity of metal contaminants in sediments to organisms is dependent on the bioavailability of the metals in both the water and sediment phases and the sensitivity of the organism to the metal exposure. This study investigated the effects of two metal contaminants of concern (CdCl2 and CuCl2) on a battery of marine bioassays employed for sediment assessment. Cadmium, a known carcinogen and widespread marine pollutant, was found to be the least toxic of the two assayed metals in all in vivo tests. However, CdCl2 was found to be more toxic to the fish cell lines PLHC-1 and RTG-2 than CuCl2. Tisbe battagliai was the most sensitive species to both metals and the Microtox® and cell lines were the least sensitive (cadmium was found to be three orders of magnitude less toxic to Vibrio fischeri than to T. battagliai). The sensitivity of Tetraselmis suecica to the two metals varied greatly. Marine microalgae are among the organisms that can tolerate higher levels of cadmium. This hypothesis is demonstrated in this study where it was not possible to derive an EC50 value for CdCl2 and the marine prasinophyte, T. suecica. Conversely, CuCl2 was observed to be highly toxic to the marine alga, EC50 of 1.19 mg l−1. The genotoxic effect of Cu on the marine phytoplankton was evaluated using the Comet assay. Copper concentrations ranging from 0.25 to 2.50 mg l−1 were used to evaluate the effects. DNA damage was measured as percent number of comets and normal cells. There was no significant DNA damage observed at any concentration of CuCl2 tested and no correlation with growth inhibition and genetic damage was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abel PD (1989) Water pollution biology. Ellis Horwood, Chichester

    Google Scholar 

  • Absolom DR (1986) Basic methods for the study of phagocytosis. Methods Enzymol 132:95–182. doi:10.1016/S0076-6879(86)32005-6

    Article  CAS  Google Scholar 

  • Anderson LM, Kasprzak KS, Rice JM (1994) Preconception exposure of males and neoplasia in their progeny: effects of metals and consideration of mechanisms. In: Olshan AF, Mattison DR (eds) Male-mediated development toxicity. Plenum Press, NY, pp 129–140

    Google Scholar 

  • Azur Environmental Ltd (1989) Microtox acute toxicity basic test procedures. Azur Environmental, Carlsbad

  • Babich H, Borenfreund E (1987) In vitro cytotoxicity of organic pollutants to bluegill sunfish (BF-2) cells. Environ Res 42:229–237. doi:10.1016/S0013-9351(87)80024-5

    Article  CAS  Google Scholar 

  • Babich H, Puerner JA, Borenfreund E (1986) In vitro cytoxicity of metals to bluegill (BF-2) cells. Arch Environ Contam Toxicol 15:31–37. doi:10.1007/BF01055246

    Article  CAS  Google Scholar 

  • Babich H, Goldstein SH, Borenfreund E (1990) In vitro cyto- and genotoxicity of organomercurials to cells in culture. Toxicol Lett 50:143–149. doi:10.1016/0378-4274(90)90004-6

    Article  CAS  Google Scholar 

  • Bauda P, Block JC (1990) Role of envelops of Gram negative bacteria in cadmium binding and toxicity. Toxicol Assess 5:47–60. doi:10.1002/tox.2540050105

    Article  CAS  Google Scholar 

  • Bechmann RK (1999) Effects of the endocrine disrupter nonylphenol on the marine copepod Tisbe battagliai. Sci Total Environ 233:33–46. doi:10.1016/S0048-9697(99)00177-1

    Article  CAS  Google Scholar 

  • Besser JM, Mebane CA, Mount DR, Ivey CD, Kunz JL, Greer IE, May TW, Ingersoll CG (2007) Sensitivity of mottled sculpins (Cottus bairdi) and rainbow trout (Onchorhynchus mykiss) to acute and chronic toxicity of cadmium, copper, and zinc. Environ Toxicol Chem 26:1657–1665. doi:10.1897/06-571R.1

    Article  CAS  Google Scholar 

  • Bitton G, Freihoffer V (1978) Influence of extracellular polysaccharides on the toxicity of copper and cadmium towards Klebsiella aerogenes. Microb Ecol 4:199–225. doi:10.1111/j.1574-6968.1978.tb02864.x

    Article  Google Scholar 

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation, and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76:89–131. doi:10.1016/0269-7491(92)90099-V

    Article  CAS  Google Scholar 

  • BS EN ISO 10253 (1998) water quality-marine algal growth inhibition test with Skeletonema costatum and Phaeodactylum tricornutum. The British Standard Institute, London

    Google Scholar 

  • Castaño A, Cantarino MJ, Castillo P, Tarazona JV (1996) Correlations between the RTG-2 cytotoxicity tests EC50 and in vivo LC50 rainbow trout bioassay. Chemosphere 32:2141–2157. doi:10.1016/0045-6535(96)00126-9

    Article  Google Scholar 

  • Codina JC, Cazorla FM, Pérez-García A, De Vicente A (2000) Heavy metal toxicity and genotoxicity in water and sewage determined by microbiological methods. Environ Toxicol Chem 19:1552–1558. doi:10.1897/1551-5028(2000)019<1552:HMTAGI>2.3.CO;2

    Article  CAS  Google Scholar 

  • Cronin M, McGovern E, McMahon T, Boelens R (2006) Guidelines for the assessment of dredge material for disposal in Irish waters. Marine Environmental and Health Series, No. 24. Marine Institute, Galway

    Google Scholar 

  • Davoren M, Fogarty AM (2006) In vitro cytotoxicity assessment of the biocidal agents sodium o-phenylphenol, sodium o-benzyl-p-chlorophenol, and sodium p-tertiary amylphenol using established fish cell lines. Toxicol In Vitro 20:1190–1201. doi:10.1016/j.tiv.2006.03.005

    Article  CAS  Google Scholar 

  • Davoren M, Ní Shúilleabháin S, Hartl MGJ, Sheehan D, O’Brien NM, O’Halloran J, Van Pelt FNAM, Mothersill C (2005) Assessing the potential of fish cell lines as tools for the cytotoxicity of estuarine sediment aqueous elutriates. Toxicol In Vitro 19:421–431. doi:10.1016/j.tiv.2004.12.002

    Article  CAS  Google Scholar 

  • De Kuhn RM, Streb C, Breiter R, Richter P, Neeße T, Häder DP (2006) Screening for unicellular algae as possible bioassay organisms for monitoring marine water samples. Water Res 40:2695–2703. doi:10.1016/j.watres.2006.04.045

    Article  CAS  Google Scholar 

  • Desai SR, Verlecar XN, Nagarajappa Goswami U (2006) Genotoxicity of cadmium in marine diatom Chaetoceros tenussimus using the alkaline Comet assay. Ecotoxicology 15:359–363. doi:10.1007/s10646-006-0076-2

    Article  CAS  Google Scholar 

  • Fent K, Hunn J (1996) Cytotoxicity of organic environmental chemicals to fish liver cells (PLHC-1). Mar Environ Res 42:377–382. doi:10.1016/0141-1136(95)00043-7

    Article  CAS  Google Scholar 

  • Fulladosa E, Murat JC, Martínez M, Villaescusa I (2005) Patterns in metals and arsenic poisoning in Vibrio fischeri bacteria. Chemosphere 60:43–48. doi:10.1016/j.chemosphere.2004.12.026

    Article  CAS  Google Scholar 

  • Guecheva T, Henriques JAP, Erdtmann B (2001) Genotoxic effects of copper sulphate in freshwater planarian in vivo, studied with the single-cell gel test (comet assay). Mutat Res 497:19–27

    CAS  Google Scholar 

  • Hagger JA, Depledge MH, Oehlmann J, Jobling S, Galloway TS (2006) Is there a causal association between genotoxicity and the imposex effect? Environ Health Perspect 114:20–26

    Article  Google Scholar 

  • Hsieh CY, Tsai MH, Ryan DK, Pancorbo OC (2004) Toxicity of the 13 priority pollutant metals to Vibrio fischeri in the Microtox® chronic toxicity test. Sci Total Environ 320:37–50. doi:10.1016/S0048-9697(03)00451-0

    Article  CAS  Google Scholar 

  • Hu SX, Lau KWK, Wu M (2001) Cadmium sequestration in Chlamydomonas reinhardtii. Plant Sci Limerick 161:987–996. doi:10.1016/S0168-9452(01)00501-5

    Article  CAS  Google Scholar 

  • Hutchinson TH, Williams TD, Eales GJ (1994) Toxicity of cadmium, hexavalent chromium and copper to marine fish larvae (Cyprinodon variegates) and copepods (Tisbe battagliai). Mar Environ Res 38:275–290. doi:10.1016/0141-1136(94)90028-0

    Article  CAS  Google Scholar 

  • Ismail M, Phang S, Tong S, Brown MT (2002) A modified toxicity testing method using tropical marine microalgae. Environ Monit Assess 75:145–154. doi:10.1023/A:1014483713719

    Article  CAS  Google Scholar 

  • ISO/DIS 14669 (1997) Water quality—determination of acute lethal toxicity to marine copepoda (Copepoda, Crustacea). International Standard, Geneva

    Google Scholar 

  • Kennish MJ (1997) Heavy metals. In: Practical handbook of estuarine and marine pollution. CRC Press Marine Science Series, Boca Raton, Florida, pp 253–327

  • Kilemade M, Hartl MGJ, Sheehan D, Mothersill C, van Pelt FNAM, O’Brien NM, O’Halloran J (2004) An Assessment of the pollutant status of surfical sediment in Cork Harbour in the South East of Ireland with particular reference to polycyclic aromatic hydrocarbons. Mar Pollut Bull 49:1084–1096. doi:10.1016/j.marpolbul.2004.08.002

    Article  CAS  Google Scholar 

  • Macken A, Giltrap M, Foley B, McGovern E, McHugh B, Davoren M (2008) A model compound study: the ecotoxicological evaluation of five organic contaminants with a battery of marine bioassays. Environ Pollut 153(3):627–637. doi:10.1016/j.envpol.2007.09.005

    Article  CAS  Google Scholar 

  • Morozzi G, Cenci G, Scardazza F, Pitzurra M (1986) Cadmium uptake by growing cells of Gram-positive and Gram-negative bacteria. Microbios 48:27–35

    CAS  Google Scholar 

  • Nassiri Y, Ginsburger-Vogel T, Mansot JL, Wéry J (1996) Effects of heavy metals on Tetraselmis suecica: ultrastructural and energy-dispersive X-ray spectroscopy studies. Biol Cell 86:151–160. doi:10.1016/0248-4900(96)84779-4

    Article  CAS  Google Scholar 

  • Newman MC (1995) Quantitative methods in aquatic ecotoxicology. Lewis, Chelsea

    Google Scholar 

  • Newman MC, McCloskey JT (1996) Predicting relative toxicity and interactions of divalent metal ions: microtox bioluminescence assay. Environ Toxicol Chem 15(3):275–281. doi:10.1897/1551-5028(1996)015<0275:PRTAIO>2.3.CO;2

    Article  CAS  Google Scholar 

  • Ní Shúilleabháin S, Mothersill C, Sheehan D, O’Brien NM, O’Halloran J, Van Pelt FNAM, Davoren M (2004) In vitro cytotoxicity testing of three zinc metal salts using established fish cell lines. Toxicol In Vitro 18:365–376. doi:10.1016/j.tiv.2003.10.006

    Article  CAS  Google Scholar 

  • Niencheski LF, Windom HL, Smith R (1994) Distribution of particulate trace metal in Patos Lagoon estuary (Brazil). Mar Pollut Bull 28:96–102. doi:10.1016/0025-326X(94)90545-2

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139. doi:10.1038/333134a0

    Article  CAS  Google Scholar 

  • O’Brian P, Feldman H, Grill E, Lewis AG (1988) Copper tolerance of the life history stages of the splashpool copepod Tigriopus californicus (Copepoda, Harpacticoida). Mar Ecol Prog Ser 44:59–64. doi:10.3354/meps044059

    Article  Google Scholar 

  • Peinado MT, Mariscal A, Carnero-Varo M, Fernandez-Crehuet J (2002) Correlation of two bioluminescence and one fluorogenic bioassay for the detection of toxic chemicals. Ecotoxicol Environ Saf 53:170–177. doi:10.1006/eesa.2002.2177

    Article  CAS  Google Scholar 

  • Pérez-Rama M, Herrero López C, Alonso JA, Torres Vaamonde E (2001) Class III metallothioneins in response to cadmium toxicity in the marine microalga Tetraselmis suecica (Kylin) Butch. Environ Toxicol Chem 20:2061–2066

    Article  Google Scholar 

  • Pérez-Rama M, Alonso JA, Herrero López C, Torres Vaamonde E (2002) Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresource Technol 84:265–270

    Article  Google Scholar 

  • Pérez-Rama M, Vaamonde ET, Alonso JA (2006) Composition and production of thiol constituents induced by cadmium in the marine microalga Tetraselmis suecica. Environ Toxicol Chem 25(1):128–136

    Article  Google Scholar 

  • Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy-metal pollution. Biol Rev 56:99–151

    Article  CAS  Google Scholar 

  • Rainbow PS (1993) The significance of trace metal concentration in marine invertebrates. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals in invertebrates. Lewis publishers, Boca Raton

    Google Scholar 

  • Reid TM, Feig DI, Loeb LA (1994) Mutagenesis by metal-induced oxygen radicals. Environ Health Persp 102(3):57–61

    Article  CAS  Google Scholar 

  • Rice HV, Leighty DA, McLeod GC (1973) The effects of some trace metals on marine phytoplankton. CRC Criti Rev Microbiol 3:27–49

    Article  CAS  Google Scholar 

  • Ryan JA, Hightower LE (1994) Evaluation of heavy-metal ion toxicity in fish cells using a combined stress protein and cytotoxicity assay. Environ Toxicol Chem 13(8):1231–1240

    Article  CAS  Google Scholar 

  • Saito H, Iwami S, Shigeoka T (1991) In vitro cytotoxicity of 45 pesticides to goldfish GF-scale (GFS) cells. Chemosphere 23:525–537

    Article  CAS  Google Scholar 

  • Satoh A, Vudikaria LQ, Kurano N, Miyachi S (2005) Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Pb and Cd. Environ Int 31(5):713–722

    Article  CAS  Google Scholar 

  • Scarano G, Morelli E (2002) Characterization of cadmium- and lead-phytochelatin complexes formed in a marine microalga in response to metal exposure. Biometals 15:145–151

    Article  CAS  Google Scholar 

  • Segner H, Braunbeck T (1998) Chemical response profile to chemical stress. In: Schüürmann G, Markert B (eds) Ecotoxicology: ecological fundamentals chemical exposure and biological effects. John Wiley & Sons Inc., New York, USA; Spektrum Akademisher Verlag, Germany, pp 521–557

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Bio Med 18:321–336

    Article  CAS  Google Scholar 

  • Toussaint MW, Shedd TR, Van der Schalie WH, Leather GR (1995) A comparison of standard acute toxicity tests with rapid screening toxicity tests. Environ Toxicol Chem 14:907–915

    Article  CAS  Google Scholar 

  • Tsiridis V, Petala M, Samaras P, Hadjispyrou S, Sakellaropoulos G, Kungolos A (2006) Interactive toxic effects of heavy metals and humic acids on Vibrio fischeri. Ecotox Environ Saf 63:158–167

    Article  CAS  Google Scholar 

  • Utgikar VP, Chaudhary N, Koeniger A, Tabak HH, Haines JR, Govind R (2004) Toxicity of metals and metal mixtures: analysis of concentration and time dependence for zinc and copper. Water Res 38:3651–3658

    Article  CAS  Google Scholar 

  • Viarengo A (1989) Heavy metals in marine invertebrates: mechanisms of regulation and toxicity at the cellular level. CRC Criti Rev Aquat Sci 1:295–317

    CAS  Google Scholar 

  • Warnau M, Ledent G, Temara A, Jangoux M, Dubois P (1995) Experimental cadmium contamination of the echinoid Paracentrotus lividus: influence of exposure mode and distribution of the metal in the organism. Mar Ecol Prog Ser 1666:117–124

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely wish to thank the Shannon Aquatic Toxicological Laboratory (SATL), especially Robert Hernan and Kathleen O’Rourke, for supplying the Tisbe battagliai and providing technical assistance for starting up our own culture facility. Funding for this research was provided by Technology Sector Research: Strand III: Core Research Strengths.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailbhe Macken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macken, A., Giltrap, M., Ryall, K. et al. A test battery approach to the ecotoxicological evaluation of cadmium and copper employing a battery of marine bioassays. Ecotoxicology 18, 470–480 (2009). https://doi.org/10.1007/s10646-009-0305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0305-6

Keywords

Navigation