Skip to main content

Advertisement

Log in

Targeting LEF1-mediated epithelial-mesenchymal transition reverses lenvatinib resistance in hepatocellular carcinoma

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Acquired resistance is a significant hindrance to clinical application of lenvatinib in unresectable hepatocellular carcinoma (HCC). Further in-depth investigation of resistance mechanisms can help to develop additional therapeutic strategies to overcome or delay resistance. In our study, two lenvatinib-resistant (LR) HCC cell lines were established by treatment with gradient increasing concentration of lenvatinib, named Hep3B-LR and HepG2-LR. Interestingly, continuous lenvatinib treatment reinforced epithelial-mesenchymal transition (EMT), cell migration, and cell invasion. Gene set enrichment analysis (GSEA) enrichment analysis of RNA-sequencing from Hep3B-LR and corresponding parental cells revealed that activation of Wnt signaling pathway was involved in this adaptive process. Active β-catenin and its downstream target lymphoid enhancer binding factor 1 (LEF1) were significantly elevated in LR HCC cells, which promoted lenvatinib resistance through mediating EMT-related genes. Data analysis based on Gene Expression Omnibus (GEO) and the Cancer Genome Atlas Program (TCGA) databases suggests that LEF1, as a key regulator of EMT, was a novel molecular target linked to lenvatinib resistance and poor prognosis in HCC. Using a small-molecule specific inhibitor ICG001 and knocking down LEF1 showed that targeting LEF1 restored the sensitivity of LR HCC cells to lenvatinib. Our results uncover upregulation of LEF1 confers lenvatinib resistance by facilitating EMT, cell migration, and invasion of LR HCC cells, indicating that LEF1 is a novel therapeutic target for overcoming acquired lenvatinib resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  2. Llovet JM, Pinyol R, Kelley RK, El-Khoueiry A, Reeves HL, Wang XW et al (2022) Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nat Cancer 3(4):386–401. https://doi.org/10.1038/s43018-022-00357-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S et al (2021) Hepatocellular carcinoma. Nat Rev Dis Primers 7(1):6. https://doi.org/10.1038/s41572-020-00240-3

    Article  PubMed  Google Scholar 

  4. Sangro B, Sarobe P, Hervas-Stubbs S, Melero I (2021) Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 18(8):525–543. https://doi.org/10.1038/s41575-021-00438-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T et al (2008) E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer 122(3):664–671. https://doi.org/10.1002/ijc.23131

    Article  CAS  PubMed  Google Scholar 

  6. Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M (2008) Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res 14(17):5459–5465. https://doi.org/10.1158/1078-0432.CCR-07-5270

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Yu H, Dong W, Zhang C, Hu M, Ma W et al (2023) N6-methyladenosine-mediated up-regulation of FZD10 regulates liver cancer stem cells’ properties and lenvatinib resistance through WNT/beta-catenin and hippo signaling pathways. Gastroenterology 164(6):990–1005. https://doi.org/10.1053/j.gastro.2023.01.041

    Article  CAS  PubMed  Google Scholar 

  8. Tian Y, Lei Y, Fu Y, Sun H, Wang J, Xia F (2022) Molecular mechanisms of resistance to tyrosine kinase inhibitors associated with hepatocellular carcinoma. Curr Cancer Drug Targets 22(6):454–462. https://doi.org/10.2174/1568009622666220330151725

    Article  CAS  PubMed  Google Scholar 

  9. Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F et al (2020) The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther 5(1):87. https://doi.org/10.1038/s41392-020-0187-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. da Fonseca LG, Reig M, Bruix J (2020) Tyrosine kinase inhibitors and hepatocellular carcinoma. Clin Liver Dis 24(4):719–737. https://doi.org/10.1016/j.cld.2020.07.012

    Article  PubMed  Google Scholar 

  11. Pan J, Zhang M, Dong L, Ji S, Zhang J, Zhang S et al (2023) Genome-Scale CRISPR screen identifies LAPTM5 driving lenvatinib resistance in hepatocellular carcinoma. Autophagy 19(4):1184–1198. https://doi.org/10.1080/15548627.2022.2117893

    Article  CAS  PubMed  Google Scholar 

  12. Ao J, Chiba T, Shibata S, Kurosugi A, Qiang N, Ma Y et al (2021) Acquisition of mesenchymal-like phenotypes and overproduction of angiogenic factors in lenvatinib-resistant hepatocellular carcinoma cells. Biochem Biophys Res Commun 549:171–178. https://doi.org/10.1016/j.bbrc.2021.02.097

    Article  CAS  PubMed  Google Scholar 

  13. Hu B, Zou T, Qin W, Shen X, Su Y, Li J et al (2022) Inhibition of EGFR overcomes acquired lenvatinib resistance driven by STAT3-ABCB1 signaling in hepatocellular carcinoma. Cancer Res 82(20):3845–3857. https://doi.org/10.1158/0008-5472.CAN-21-4140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang S, Ma Z, Zhou Q, Wang A, Gong Y, Li Z et al (2022) Genome-wide CRISPR/Cas9 library screening identified that DUSP4 deficiency induces lenvatinib resistance in hepatocellular carcinoma. Int J Biol Sci 18(11):4357–4371. https://doi.org/10.7150/ijbs.69969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu Y, Shen H, Huang W, He S, Chen J, Zhang D et al (2021) Genome-scale CRISPR-Cas9 knockout screening in hepatocellular carcinoma with lenvatinib resistance. Cell Death Discov 7(1):359. https://doi.org/10.1038/s41420-021-00747-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He X, Hikiba Y, Suzuki Y, Nakamori Y, Kanemaru Y, Sugimori M et al (2022) EGFR inhibition reverses resistance to lenvatinib in hepatocellular carcinoma cells. Sci Rep 12(1):8007. https://doi.org/10.1038/s41598-022-12076-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Huang M, Long J, Yao Z, Zhao Y, Zhao Y, Liao J et al (2023) METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carcinoma. Cancer Res 83(1):89–102. https://doi.org/10.1158/0008-5472.CAN-22-0963

    Article  CAS  PubMed  Google Scholar 

  18. Duan A, Li H, Yu W, Zhang Y, Yin L (2022) Long noncoding RNA XIST promotes resistance to lenvatinib in hepatocellular carcinoma cells via epigenetic inhibition of NOD2. J Oncol 2022:4537343. https://doi.org/10.1155/2022/4537343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ozvegy-Laczka C, Cserepes J, Elkind NB, Sarkadi B (2005) Tyrosine kinase inhibitor resistance in cancer: role of ABC multidrug transporters. Drug Resist Updat 8(1–2):15–26. https://doi.org/10.1016/j.drup.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  20. Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK et al (2019) The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells 8(10). https://doi.org/10.3390/cells8101118

  21. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M et al (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci U S A 101(34):12682–12687. https://doi.org/10.1073/pnas.0404875101

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Henderson WR, Jr., Chi E Y, Ye X, Nguyen C, Tien Y T, Zhou B, et al (2010) Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 107(32):14309–14314. https://doi.org/10.1073/pnas.1001520107

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  23. Chen CL, Tsai YS, Huang YH, Liang YJ, Sun YY, Su CW et al (2018) Lymphoid enhancer factor 1 contributes to hepatocellular carcinoma progression through transcriptional regulation of epithelial-mesenchymal transition regulators and stemness genes. Hepatol Commun 2(11):1392–1407. https://doi.org/10.1002/hep4.1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kobayashi W, Ozawa M (2013) The transcription factor LEF-1 induces an epithelial-mesenchymal transition in MDCK cells independent of beta-catenin. Biochem Biophys Res Commun 442(1–2):133–138. https://doi.org/10.1016/j.bbrc.2013.11.031

    Article  CAS  PubMed  Google Scholar 

  25. Basu S, Cheriyamundath S, Ben-Ze'ev A (2018) Cell-cell adhesion: linking Wnt/beta-catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000Res 7. https://doi.org/10.12688/f1000research.15782.1

  26. Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14(10):611–629. https://doi.org/10.1038/nrclinonc.2017.44

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dart A (2023) EMT in chemoresistance. Nat Rev Cancer 23(6):349. https://doi.org/10.1038/s41568-023-00581-7

    Article  CAS  PubMed  Google Scholar 

  28. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480. https://doi.org/10.1016/j.cell.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  29. Lambertini E, Franceschetti T, Torreggiani E, Penolazzi L, Pastore A, Pelucchi S et al (2010) SLUG: a new target of lymphoid enhancer factor-1 in human osteoblasts. BMC Mol Biol 11:13. https://doi.org/10.1186/1471-2199-11-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Santiago L, Daniels G, Wang D, Deng FM, Lee P (2017) Wnt signaling pathway protein LEF1 in cancer, as a biomarker for prognosis and a target for treatment. Am J Cancer Res 7(6):1389–1406

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Our research was supported by the National Natural Science Foundation of China (NO. 81972664) and Natural Science Foundation of Jiangsu Province (No. BK20231419).

Author information

Authors and Affiliations

Authors

Contributions

Xinxiu Li carried out the in vitro experiments and drafted the manuscript. Hongmeng Su, Luyu Zhao, and Jinghan Sun implemented bioinformatics analysis. Shihui Shu and Wenqing Tang performed cell culture and revised the manuscript. Hong Fan designed the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Su, H., Tang, W. et al. Targeting LEF1-mediated epithelial-mesenchymal transition reverses lenvatinib resistance in hepatocellular carcinoma. Invest New Drugs 42, 185–195 (2024). https://doi.org/10.1007/s10637-024-01426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-024-01426-2

Keywords

Navigation