Skip to main content

Advertisement

Log in

Clinical characteristics, diagnosis and management of nivolumab-induced myocarditis

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Nivolumab can cause fatal myocarditis. We aimed to analyze the clinical characteristics of nivolumab-induced myocarditis and provide evidence for clinical diagnosis, treatment, and prevention. Studies involving nivolumab-induced myocarditis were identified in electronic databases from 2000 to 2023 for retrospective analysis. A total of 66 patients were included, with a median age of 68 years. The median onset time of myocarditis is 11.5 days. The main organs affected in persons presented with myocarditis are heart (100.0%) and skeletal muscle (22.7%). The main clinical manifestations are dyspnea (49.2%), fatigue (47.6%), and myalgias (25.4%). The levels of troponin, troponin T, troponin I, creatine kinase, creatine kinase myocardial band, creatine phosphokinase, C-reactive protein, brain natriuretic peptide, and N-terminal brain natriuretic peptide precursor were significantly increased. Histopathology often shows lymphocyte infiltration, myocardial necrosis, and fibrosis. Myocardial immunological parameters usually present positive. Cardiac imaging often suggests complete heart block, intraventricular conduction delay, arrhythmia, myocardial infarction, edema, left ventricular ejection fractions reduction, ventricular dysfunction, and other symptoms of myocarditis. Forty-two (63.6%) patients achieved remission within a median time of 8 days after discontinuation of nivolumab and treatment with systemic corticosteroids, immunoglobulins, plasmapheresis, and immunosuppressant. Thirty-five patients eventually died attributed to myocarditis (68.6%), cancer (20.0%), respiratory failure (5.7%), and other reasons (5.7%). Nivolumab-induced myocarditis should be comprehensively diagnosed based on clinical symptoms, histopathological manifestations, immunological parameters, and cardiac function imaging examinations. Nivolumab should be discontinued immediately, plasmapheresis and systemic corticosteroids combined with immunoglobulins or immunosuppressants may be an effective treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Paik J (2022) Nivolumab plus Relatlimab: first approval. Drugs 82:925–931

    Article  CAS  PubMed  Google Scholar 

  2. Vaddepally RK, Kharel P, Pandey R et al (2020) Review of indications of fda-approved immune checkpoint inhibitors per nccn guidelines with the level of evidence. Cancers (Basel) 12

  3. Powles T (2021) clinicalguidelines@esmo.org EGCEa. Recent eupdate to the esmo clinical practice guidelines on renal cell carcinoma on cabozantinib and nivolumab for first-line clear cell renal cancer: renal cell carcinoma: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 32:422–423

    Article  CAS  PubMed  Google Scholar 

  4. Xu C, Chen YP, Du XJ et al (2018) Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ 363:k4226

    Article  PubMed  PubMed Central  Google Scholar 

  5. Johnson DB, Balko JM, Compton ML et al (2016) Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med 375:1749–1755

    Article  PubMed  PubMed Central  Google Scholar 

  6. Suzuki S, Ishikawa N, Konoeda F et al (2017) Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology 89:1127–1134

    Article  CAS  PubMed  Google Scholar 

  7. Mahmood SS, Fradley MG, Cohen JV et al (2018) Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol 71:1755–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalbasi A, Ribas A (2020) Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol 20:25–39

    Article  CAS  PubMed  Google Scholar 

  9. Fung G, Luo H, Qiu Y et al (2016) Myocarditis Circ Res 118:496–514

    Article  CAS  PubMed  Google Scholar 

  10. Thompson JA, Schneider BJ, Brahmer J et al (2020) Nccn guidelines insights: management of immunotherapy-related toxicities, version 1.2020. J Natl Compr Canc Netw 18:230–241

    Article  CAS  PubMed  Google Scholar 

  11. Ganatra S, Neilan TG (2018) Immune checkpoint inhibitor-associated myocarditis. Oncologist 23:879–886

    Article  PubMed  PubMed Central  Google Scholar 

  12. Varricchi G, Galdiero MR, Marone G et al (2017) Cardiotoxicity of immune checkpoint inhibitors. ESMO Open 2:e000247

    Article  PubMed  PubMed Central  Google Scholar 

  13. Salem JE, Manouchehri A, Moey M et al (2018) Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol 19:1579–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moslehi JJ, Salem JE, Sosman JA et al (2018) Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 391:933

    Article  PubMed  PubMed Central  Google Scholar 

  15. Poto R, Marone G, Pirozzi F et al (2021) How can we manage the cardiac toxicity of immune checkpoint inhibitors? Expert Opin Drug Saf 20:685–694

    Article  CAS  PubMed  Google Scholar 

  16. Zito C, Manganaro R, Cusma Piccione M et al (2021) Anthracyclines and regional myocardial damage in breast cancer patients. A multicentre study from the working group on drug cardiotoxicity and cardioprotection, Italian society of cardiology (sic). Eur Heart J Cardiovasc Imaging 22:406–415

    Article  PubMed  Google Scholar 

  17. Fedele C, Riccio G, Coppola C et al (2012) Comparison of preclinical cardiotoxic effects of different erbb2 inhibitors. Breast Cancer Res Treat 133:511–521

    Article  CAS  PubMed  Google Scholar 

  18. Mercurio V, Cuomo A, Della Pepa R et al (2019) What is the cardiac impact of chemotherapy and subsequent radiotherapy in lymphoma patients? Antioxid Redox Signal 31:1166–1174

    Article  CAS  PubMed  Google Scholar 

  19. Awadalla M, Golden DLA, Mahmood SS et al (2019) Influenza vaccination and myocarditis among patients receiving immune checkpoint inhibitors. J Immunother Cancer 7:53

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sury K, Perazella MA, Shirali AC (2018) Cardiorenal complications of immune checkpoint inhibitors. Nat Rev Nephrol 14:571–588

    Article  CAS  PubMed  Google Scholar 

  21. Darnell EP, Mooradian MJ, Baruch EN et al (2020) Immune-related adverse events (iraes): diagnosis, management, and clinical pearls. Curr Oncol Rep 22:39

    Article  PubMed  Google Scholar 

  22. Kimura T, Fukushima S, Miyashita A et al (2016) Myasthenic crisis and polymyositis induced by one dose of nivolumab. Cancer Sci 107:1055–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Saishu Y, Yoshida T, Seino Y et al (2022) Nivolumab-related myasthenia gravis with myositis requiring prolonged mechanical ventilation: a case report. J Med Case Rep 16:61

    Article  PubMed  PubMed Central  Google Scholar 

  24. Caforio ALP, Malipiero G, Marcolongo R et al (2017) Myocarditis: a clinical overview. Curr Cardiol Rep 19:63

    Article  CAS  PubMed  Google Scholar 

  25. Atallah-Yunes SA, Kadado AJ, Kaufman GP et al (2019) Immune checkpoint inhibitor therapy and myocarditis: a systematic review of reported cases. J Cancer Res Clin Oncol 145:1527–1557

    Article  CAS  PubMed  Google Scholar 

  26. Kindermann I, Barth C, Mahfoud F et al (2012) Update on myocarditis. J Am Coll Cardiol 59:779–792

    Article  PubMed  Google Scholar 

  27. Monge C, Maeng H, Brofferio A et al (2018) Myocarditis in a patient treated with nivolumab and prostvac: a case report. J Immunother Cancer 6:150

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou YW, Zhu YJ, Wang MN et al (2019) Immune checkpoint inhibitor-associated cardiotoxicity: current understanding on its mechanism, diagnosis and management. Front Pharmacol 10:1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nishimura H, Okazaki T, Tanaka Y et al (2001) Autoimmune dilated cardiomyopathy in pd-1 receptor-deficient mice. Science 291:319–322

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Lucas JA, Menke J, Rabacal WA et al (2008) Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in mrl mice. J Immunol 181:2513–2521

    Article  CAS  PubMed  Google Scholar 

  31. Wang J, Okazaki IM, Yoshida T et al (2010) Pd-1 deficiency results in the development of fatal myocarditis in mrl mice. Int Immunol 22:443–452

    Article  CAS  PubMed  Google Scholar 

  32. Rikhi R, Karnuta J, Hussain M et al (2021) Immune checkpoint inhibitors mediated lymphocytic and giant cell myocarditis: uncovering etiological mechanisms. Front Cardiovasc Med 8:721333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reuben A, Petaccia de Macedo M, McQuade J et al (2017) Comparative immunologic characterization of autoimmune giant cell myocarditis with ipilimumab. Oncoimmunology 6:e1361097

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tay RY, Blackley E, McLean C et al (2017) Successful use of equine anti-thymocyte globulin (atgam) for fulminant myocarditis secondary to nivolumab therapy. Br J Cancer 117:921–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamaguchi S, Morimoto R, Okumura T et al (2018) Late-onset fulminant myocarditis with immune checkpoint inhibitor nivolumab. Can J Cardiol 34:812. e811-812 e813

    Article  Google Scholar 

  36. Rubio-Infante N, Ramírez-Flores YA, Castillo EC et al (2022) A systematic review of the mechanisms involved in Immune checkpoint inhibitors Cardiotoxicity and challenges to improve clinical safety. Front Cell Dev Biol 10:851032

    Article  PubMed  PubMed Central  Google Scholar 

  37. Haanen J, Obeid M, Spain L et al (2022) Management of toxicities from immunotherapy: Esmo clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol 33:1217–1238

    Article  CAS  PubMed  Google Scholar 

  38. Brahmer JR, Lacchetti C, Schneider BJ et al (2018) Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline. J Clin Oncol 36:1714–1768

    Article  CAS  PubMed  Google Scholar 

  39. Kwon HJ, Cote TR, Cuffe MS et al (2003) Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med 138:807–811

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Key Clinical Specialty Construction Project (Clinical Pharmacy) and High-Level Clinical Key Specialty (Clinical Pharmacy) in Guangdong Province, with the funder being the subsidy fund for medical service and security capacity improvement of the Central Department of Finance, code Z155080000004.

Author information

Authors and Affiliations

Authors

Contributions

Meng-Ting Li and Ji-Sheng Chen designed the study. Meng-Ting Li and Yang He provided the information on included studies and assisted with data collection and management. Meng-Ting Li, Si-Yong Huang, and Xiao Hu conducted data analysis. All authors contributed to completing the final manuscript and have approved the final article.

Corresponding author

Correspondence to Ji-Sheng Chen.

Ethics declarations

Ethical approval

This study did not require an ethical board approval because the study was a retrospective study and did not involve sensitive personal information.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MT., He, Y., Huang, SY. et al. Clinical characteristics, diagnosis and management of nivolumab-induced myocarditis. Invest New Drugs 42, 116–126 (2024). https://doi.org/10.1007/s10637-024-01421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-024-01421-7

Keywords

Navigation