Skip to main content

Advertisement

Log in

Enhanced antitumor and anti-metastasis by VEGFR2-targeted doxorubicin immunoliposome synergy with NK cell activation

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Liposomal doxorubicin exhibits stronger drug accumulation at the tumor site due to the Enhanced Permeability and Retention (EPR) effect. However, the prognosis for the patient is poor due to this drug’s lack of targeting and tumor metastasis during treatment. Vascular epidermal growth factor receptor (VEGFR2) plays an important role in angiogenesis and cancer metastasis. To enhance antitumor efficacy of PEGylated liposomal doxorubicin, we constructed a VEGFR2-targeted and doxorubicin-loaded immunoliposome (Lipo-DOX-C00) by conjugating a VEGFR2-specific, single chain antibody fragment to DSPE-PEG2000-MAL, and then we inserted the antibody-conjugated polymer into liposomal doxorubicin (Lipo-DOX). The immunoliposome was formed uniformly with high affinity for VEGFR2. In vitro, Lipo-DOX-C00 enhanced doxorubicin internalization into LLC and 4T1 cells compared with non-conjugated, liposomal doxorubicin. In vivo, Lipo-DOX-C00 delivered DOX to tumor tissues effectively, which exhibited an improved antitumor and anti-metastasis efficacy in both LLC subcutaneous tumor models and 4T1 tumor models. In addition, the combined therapy of a VEGFR2–MICA bispecific antibody (JZC01) and Lipo-DOX-C00 achieved enhanced inhibition of cancer growth and metastasis due to activation of the immune system. Our study provides a promising approach to clinical application of liposomal doxorubicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, upon reasonable request.

References

  1. Barenholz Y (2012) Doxil®–the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  PubMed  Google Scholar 

  2. He H, Liu L, Morin E, Liu M (2019) Schwendeman AJAocr. Survey of Clinical Translation of Cancer Nanomedicines-Lessons Learned from Successes and Failures 52(9):2445–2461

    CAS  Google Scholar 

  3. Gabizon AA, Patil Y, La-Beck NM (2016) New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updates 29:90–106

    Article  Google Scholar 

  4. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904

    Article  CAS  PubMed  Google Scholar 

  5. Füredi A, Szebényi K, Tóth S, Cserepes M, Hámori L, Nagy V et al (2017) Pegylated liposomal formulation of doxorubicin overcomes drug resistance in a genetically engineered mouse model of breast cancer. J Control Release 261:287–296

    Article  PubMed  Google Scholar 

  6. O’Brien MER, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A et al (2004) Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYX™/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer. Ann Oncol 15(3):440–449

    Article  PubMed  Google Scholar 

  7. Sapra P, Allen TM (2002) Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Can Res 62(24):7190–7194

    CAS  Google Scholar 

  8. Park JW, Hong KL, Kirpotin DB, Colbern G, Shalaby R, Baselga J et al (2002) Anti-HER2 immunoliposomes: Enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8(4):1172–1181

    CAS  PubMed  Google Scholar 

  9. Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD et al (2003) Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Can Res 63(12):3154–3161

    CAS  Google Scholar 

  10. Heath T, Fraley R, Papahdjopoulos D (1980) Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab')2 to vesicle surface. Science 210(4469):539–541

  11. Xu C, Yang S, Jiang ZJ, Zhou JP, Yao J (2020) Self-propelled gemini-like LMWH-scaffold nanodrugs for overall tumor microenvironment manipulation via macrophage reprogramming and vessel normalization. Nano Lett 20(1):372–383

    Article  CAS  PubMed  Google Scholar 

  12. Yang DZ, Feng LZ, Dougherty CA, Luker KE, Chen DQ, Cauble MA et al (2016) In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials 104:361–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Basho RK, Gilcrease M, Murthy RK, Helgason T, Karp DD, Meric-Bernstam F et al (2017) Targeting the PI3K/AKT/mTOR Pathway for the Treatment of Mesenchymal Triple-Negative Breast Cancer. JAMA Oncol 3(4):509

    Article  PubMed  Google Scholar 

  14. Verschraegen CF, Czok S, Muller CY, Boyd L, Lee SJ, Rutledge T et al (2012) Phase II study of bevacizumab with liposomal doxorubicin for patients with platinum- and taxane-resistant ovarian cancer. Ann Oncol 23(12):3104–3110

    Article  CAS  PubMed  Google Scholar 

  15. Moulder S, Moroney J, Helgason T, Wheler J, Booser D, Albarracin C et al (2011) Responses to Liposomal Doxorubicin, Bevacizumab, and Temsirolimus in Metaplastic Carcinoma of the Breast: Biologic Rationale and Implications for Stem-Cell Research in Breast Cancer. J Clin Oncol 29(19):e572–e575

    Article  PubMed  Google Scholar 

  16. Poveda AM, Selle F, Hilpert F, Reuss A, Savarese A, Vergote I et al (2015) Bevacizumab Combined With Weekly Paclitaxel, Pegylated Liposomal Doxorubicin, or Topotecan in Platinum-Resistant Recurrent Ovarian Cancer: Analysis by Chemotherapy Cohort of the Randomized Phase III AURELIA Trial. J Clin Oncol 33(32):3836–3838

    Article  CAS  PubMed  Google Scholar 

  17. Kudoh K, Takano M, Kouta H, Kikuchi R, Kita T, Miyamoto M et al (2011) Effects of bevacizumab and pegylated liposomal doxorubicin for the patients with recurrent or refractory ovarian cancers. Gynecol Oncol 122(2):233–237

    Article  CAS  PubMed  Google Scholar 

  18. Otrock ZK, Makarem JA, Shamseddine AI (2007) Vascular endothelial growth factor family of ligands and receptors: Review. Blood Cell Mol Dis 38(3):258–268

    Article  CAS  Google Scholar 

  19. Hamerlik P, Lathia JD, Rasmussen R, Wu QL, Bartkova J, Lee M et al (2012) Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 209(3):507–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sawant RR, Torchilin VP (2012) Challenges in Development of Targeted Liposomal Therapeutics. AAPS J 14(2):303–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang J, Li H, Wang X, Qi H, Miao X, Zhang T et al (2012) Phage-derived fully human antibody scFv fragment directed against human vascular endothelial growth factor receptor 2 blocked its interaction with VEGF. Biotechnol Prog 28(4):981–989

    Article  PubMed  Google Scholar 

  22. Xu Y, Zhang XR, Wang Y, Pan MZ, Wang M, Zhang J (2019) A VEGFR2-MICA bispecific antibody activates tumor-infiltrating lymphocytes and exhibits potent anti-tumor efficacy in mice. Cancer Immunol Immun 68(9):1429–1441

    Article  CAS  Google Scholar 

  23. Pasquetto MV, Vecchia L, Covini D, Digilio R, Scotti C (2011) Targeted Drug Delivery Using Immunoconjugates: Principles and Applications. J Immunother 34(9):611–628

    Article  CAS  PubMed  Google Scholar 

  24. Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6(5):343–357

    Article  CAS  PubMed  Google Scholar 

  25. Kirpotin D, Park JW, Hong K, Zalipsky S, Li WL, Carter P et al (1997) Sterically stabilized Anti-HER2 immunoliposomes: Design and targeting to human breast cancer cells in vitro. Biochemistry 36(1):66–75

    Article  CAS  PubMed  Google Scholar 

  26. Song X, Wan Z, Chen T, Fu Y, Jiang K, Yi X et al (2016) Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment. Biomaterials 108:44–56

    Article  CAS  PubMed  Google Scholar 

  27. Xu P, Yin Q, Shen J, Chen L, Yu H, Zhang Z et al (2013) Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. Int J Pharm 454(1):21–30

    Article  CAS  PubMed  Google Scholar 

  28. Jiang K, Song X, Yang L, Li L, Wan Z, Sun X et al (2018) Enhanced antitumor and anti-metastasis efficacy against aggressive breast cancer with a fibronectin-targeting liposomal doxorubicin. J Control Release 271:21–30

    Article  CAS  PubMed  Google Scholar 

  29. Kocatürk B, Versteeg HH (2015) Orthotopic injection of breast cancer cells into the mammary fat pad of mice to study tumor growth. J Vis Exp (96):51967

  30. Cao X, Luo J, Gong T, Zhang ZR, Sun X, Fu Y (2015) Coencapsulated doxorubicin and bromotetrandrine lipid nanoemulsions in reversing multidrug resistance in breast cancer in vitro and in vivo. Mol Pharm 12(1):274–286

    Article  CAS  PubMed  Google Scholar 

  31. Zhou A, Du J, Jiao M, Xie D, Wang Q, Xue L et al (2019) Co-delivery of TRAIL and siHSP70 using hierarchically modular assembly formulations achieves enhanced TRAIL-resistant cancer therapy. J Control Release 304:111–124

    Article  CAS  PubMed  Google Scholar 

  32. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE et al (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 21(7):440–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramachandran C, Samy TS, Huang XL, Yuan ZK, Krishan A (1993) Doxorubicin-induced DNA breaks, topoisomerase II activity and gene expression in human melanoma cells. Biochem Pharmacol 45(6):1367–1371

    Article  CAS  PubMed  Google Scholar 

  34. Ferrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S et al (2018) Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 359(6383):1537–42

  35. Wang T, Sun F, Xie W, Tang M, He H, Jia X et al (2016) A bispecific protein rG7S-MICA recruits natural killer cells and enhances NKG2D-mediated immunosurveillance against hepatocellular carcinoma. Cancer Lett 372(2):166–178

    Article  CAS  PubMed  Google Scholar 

  36. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R et al (2018) Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery. Adv Cancer Res 137:115–170

    Article  CAS  PubMed  Google Scholar 

  38. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discovery 4(2):145–160

    Article  CAS  PubMed  Google Scholar 

  40. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48

    Article  CAS  PubMed  Google Scholar 

  41. Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J et al (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8(4):1172–1181

    CAS  PubMed  Google Scholar 

  42. Lu R-M, Hwang Y-C, Liu IJ, Lee C-C, Tsai H-Z, Li H-J et al (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. El Sharouni SY, Kal HB, Battermann JJ (2003) Accelerated regrowth of non-small-cell lung tumours after induction chemotherapy. Br J Cancer 89(12):2184–9

  44. Volk-Draper L, Hall K, Griggs C, Rajput S, Kohio P, DeNardo D et al (2014) Paclitaxel Therapy Promotes Breast Cancer Metastasis in a TLR4-Dependent Manner. Can Res 74(19):5421–5434

    Article  CAS  Google Scholar 

  45. Deng Z, Rong Y, Teng Y, Zhuang X, Samykutty A, Mu J et al (2017) Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene 36(5):639–651

    Article  CAS  PubMed  Google Scholar 

  46. Genet G, Boye K, Mathivet T, Ola R, Zhang F, Dubrac A et al (2019) Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun 10(1):2350

    Article  PubMed  PubMed Central  Google Scholar 

  47. De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474

    Article  PubMed  Google Scholar 

  48. Gampel A, Moss L, Jones MC, Brunton V, Norman JC, Mellor H (2006) VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 108(8):2624–2631

    Article  CAS  PubMed  Google Scholar 

  49. Ma S, Pradeep S, Hu W, Zhang D, Coleman R, Sood A (2018) The role of tumor microenvironment in resistance to anti-angiogenic therapy. F1000Res 7:326

  50. Shimasaki N, Jain A, Campana D (2020) NK cells for cancer immunotherapy. Nat Rev Drug Discov 19(3):200–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (NSFC81973223) and the National College Students Innovation and Entrepreneurship Training Program (202210316062Y, China).

Funding

This work was supported by the National Natural Science Foundation (NSFC81973223) and the National College Students Innovation and Entrepreneurship Training Program (202210316062Y, China).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by MP and YL. The manuscript was written by MP and YL. TS and JX performed the recombinant protein preparation and FCA assays. HL, JW, and SS helped with the animal experiments. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yanying Zheng or Juan Zhang.

Ethics declarations

Ethical approval

All experimental procedures were conducted in conformity with institutional guidelines for the care and use of laboratory animals at China Pharmaceutical University, Nanjing, China, and procedures conformed to the National Institutes of Regulations for the Administration of Affairs Concerning Experimental Animals.

Conflict of interest statement

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, M., Liu, Y., Sang, T. et al. Enhanced antitumor and anti-metastasis by VEGFR2-targeted doxorubicin immunoliposome synergy with NK cell activation. Invest New Drugs 41, 664–676 (2023). https://doi.org/10.1007/s10637-023-01372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-023-01372-5

Keywords

Navigation