Skip to main content

Advertisement

Log in

Apoptosis induction and cell cycle arrest of pladienolide B in erythroleukemia cell lines

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Splicing of pre-mRNA into functional mRNA, carried out by the spliceosome, represents a crucial step in eukaryotic gene expression. Mutations and other deregulation in some of the spliceosome components have been identified in multiple pathologies, including hematological malignancies. In this context, we evaluated the therapeutic potential of a splicing inhibitor, Pladienolide B (Pla-B), in two erythroleukemia cell lines. HEL and K562 cell lines were incubated with increasing doses of Pla-B in single and daily administration. Cell viability and density were evaluated using trypan blue assay. Flow cytometry was used to evaluate cell death, cell cycle, and caspase activity. NGS analysis was performed to assess the mutational status of 4 splicing-related genes (SF3B1, U2AF1, ZRSR2 and SRSF2). Expression levels of SF3B1 and unspliced DNAJB1 were evaluated by qPCR. Pla-B significantly decreased the viability and proliferation of both cell lines in time, dose, administration schedule, and cell line-dependent manner. HEL cells were more sensible to Pla-B (IC50 = 1.5 nM) than K562 (IC50 = 25 nM), with an IC50 almost 17 times lower. Pla-B induced cell death, mainly by apoptosis, and cell cycle arrest in G0/G1 phase. No mutations were found in any of the analyzed genes, suggesting that the observed cytotoxic effect is independent of the spliceosome mutations. Splicing modulator Pla-B showed high antitumor activity against HEL and K562 cell lines, inducing apoptosis and cell cycle arrest. These data suggest that Pla-B might represent a new therapeutic approach for erythroleukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pellagatti A, Boultwood J (2016) Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications. Adv Biol Regul 63:59–70. https://doi.org/10.1016/j.jbior.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  2. Lee SCW, Abdel-Wahab O (2016) Therapeutic targeting of slicing in cancer. Nat Med 22(9):976–986. https://doi.org/10.1038/nm.4165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Climente-González H, Porta-Pardo E, Godzik A, Eyras E (2017) The functional impact of alternative splicing in Cancer. Cell Rep 20(9):2215–2226. https://doi.org/10.1016/j.celrep.2017.08.012

    Article  CAS  PubMed  Google Scholar 

  4. Yoshida K, Sanada M, Shiraishi Y et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 478(7367):64–69. https://doi.org/10.1038/nature10496

    Article  CAS  PubMed  Google Scholar 

  5. Papaemmanuil E, Cazzola M, Boultwood J et al (2011) For the chronic myeloid disorders working Group of the International Cancer Genome Consortium. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 365(15):1384–1395. https://doi.org/10.1056/NEJMoa1103283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Makishima H, Visconte V, Sakaguchi H et al (2012) Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood. 119(14):3203–3210. https://doi.org/10.1182/blood-2011-12-399774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Landau DA, Carter SL, Stojanov P et al (2013) Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 152:714–726. https://doi.org/10.1016/j.cell.2013.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindsley RC, Mar BG, Mazzola E et al (2015) Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 125(9):1367–1376. https://doi.org/10.1182/blood-2014-11-610543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hou HA, Liu CY, Kuo YY et al (2016) Splicing factor mutations predict poor prognosis in patients with de novo acute myeloid leukemia. Oncotarget. 7(8):9084–9101. https://doi.org/10.18632/oncotarget.7000

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sato M, Muguruma N, Nakagawa T et al (2014) High antitumor activity of pladienolide B and its derivative in gastric cancer. Cancer Sci 105(1):110–116. https://doi.org/10.1111/cas.12317

    Article  CAS  PubMed  Google Scholar 

  11. Yokoi A, Kotake Y, Takahashi K et al (2011) Biological validation that SF3b is a target of the antitumor macrolide pladienolide. FEBS J 278(24):4870–4880. https://doi.org/10.1111/j.1742-4658.2011.08387.x

    Article  CAS  PubMed  Google Scholar 

  12. Suda K, Rozeboom L, Yu H et al (2017) Potential effect of spliceosome inhibition in small cell lung cancer irrespective of the MYC status. PLoS One 12(2):e0172209. https://doi.org/10.1371/journal.pone.0172209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mizui Y, Sakai T, Iwata M et al (2004) Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. III. In vitro and in vivo antitumor activities. J Antibiot 57(3):188–196. https://doi.org/10.7164/antibiotics.57.188

    Article  CAS  PubMed  Google Scholar 

  14. Kashyap MK, Kumar D, Villa R et al (2015) Targeting the spliceosome in chronic lymphocytic leukemia with the macrolides FD-895 and pladienolide-B. Haematologica. 100(7):945–954. https://doi.org/10.3324/haematol.2014.122069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xargay-Torrent S, López-Guerra M, Rosich L et al (2015) The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia. Oncotarget. 6(26):22734–22749. https://doi.org/10.18632/oncotarget.4212

    Article  PubMed  PubMed Central  Google Scholar 

  16. Effenberger KA, Anderson DD, Bray WM, Prichard BE, Ma N, Adams MS, Ghosh AK, Jurica MS (2014) Coherence between cellular responses and in vitro splicing inhibition for the anti-tumor drug pladienolide B and its analogs. J Biol Chem 289(4):1938–1947. https://doi.org/10.1074/jbc.M113.515536

    Article  CAS  PubMed  Google Scholar 

  17. Hepburn LA, McHugh A, Fernandes K et al (2018) Targeting the spliceosome for cutaneous squamous cell carcinoma therapy: a role for c-MYC and wild-type p53 in determining the degree of tumour selectivity. Oncotarget. 9(33):23029–23046. https://doi.org/10.18632/oncotarget.25196

    Article  PubMed  PubMed Central  Google Scholar 

  18. Boddu P, Benton CB, Wang W, Borthakur G, Khoury JD, Pemmaraju N (2018) Erythroleukemia-historical perspectives and recent advances in diagnosis and management. Blood Rev 32(2):96–105. https://doi.org/10.1016/j.blre.2017.09.002

    Article  PubMed  Google Scholar 

  19. Arber DA (2017) Revisiting erythroleukemia. Curr Opin Hematol 24(2):146–151. https://doi.org/10.1097/MOH.0000000000000314

    Article  PubMed  Google Scholar 

  20. Santos FPS, Bueso-Ramos CE, Ravandi F (2010) Acute erythroleukemia: diagnosis and management. Expert Rev Hematol 3(6):705–718. https://doi.org/10.1586/ehm.10.62

    Article  PubMed  Google Scholar 

  21. Quentmeier H, MacLeod RA, Zaborski M, Drexler HG (2006) JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders. Leukemia. 20(3):471–476

    Article  CAS  Google Scholar 

  22. Druker BJ, Tamura S, Buchdunger E et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566

    Article  CAS  Google Scholar 

  23. Sciarrillo R, Wojtuszkiewicz A, Hassouni BEI et al (2019) Splicing modulation as novel therapeutic strategy against diffuse malignant peritoneal mesothelioma. EBioMedicine. 39:215–225. https://doi.org/10.1016/j.ebiom.2018.12.025

    Article  PubMed  Google Scholar 

  24. Salesse S, Dylla SJ, Verfaillie CM (2004) p210BCR/ABL-induced alteration of pre-mRNA splicing in primary human CD34+ hematopoietic progenitor cells. Leukemia. 18(4):727–733. https://doi.org/10.1038/sj.leu.2403310

    Article  CAS  PubMed  Google Scholar 

  25. Adamia S, Pilarski PM, Bar-Natan M, Stone RM, Griffin JD (2013) Alternative splicing in chronic myeloid leukemia (CML): a novel therapeutic target? Curr Cancer Drug Targets 13(7):735–748. https://doi.org/10.2174/15680096113139990083

    Article  CAS  PubMed  Google Scholar 

  26. Boultwood J, Dolatshad H, Varanasi SS, Yip BH, Pellagatti A (2014) The role of splicing factor mutations in the pathogenesis of the myelodysplastic syndromes. Adv Biol Regul. 54:153–161. https://doi.org/10.1016/j.jbior.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  27. Scott LM, Rebel VI (2013) Acquired mutations that affect pre-mRNA splicing in hematologic malignancies and solid tumors. J Natl Cancer Inst 105(20):1540–1549. https://doi.org/10.1093/jnci/djt257

    Article  CAS  PubMed  Google Scholar 

  28. Cazzola M, Rossi M, Malcovati L (2013) Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative. Biologic and clinical significance of somatic mutations of SF3B1 in myeloid and lymphoid neoplasms. Blood. 121(2):260–269. https://doi.org/10.1182/blood-2012-09-399725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Visconte V, Makishima H, Maciejewski JP, Tiu RV (2012) Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia. 26(12):2447–2454. https://doi.org/10.1038/leu.2012.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shiozawa Y, Malcovati L, Gallì A et al (2018) Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nat Commun 9(1):3649. https://doi.org/10.1038/s41467-018-06063-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Allende-Vega N, Dayal S, Agarwala U, Sparks A, Bourdon JC, Saville MK (2013) p53 is activated in response to disruption of the pre-mRNA splicing machinery. Oncogene. 32(1):1–14. https://doi.org/10.1038/onc.2012.38

    Article  CAS  PubMed  Google Scholar 

  32. Law JC, Ritke MK, Yalowich JC, Leder GH, Ferrell RE (1993) Mutational inactivation of the p53 gene in the human erythroid leukemic K562 cell line. Leuk Res 17(12):1045–1050

    Article  CAS  Google Scholar 

  33. H3 Biomedicine Inc. A Phase 1 Study to evaluate H3B-8800 in participants with Myelodysplastic Syndromes, Acute Myeloid Leukemia, and Chronic Myelomonocytic Leukemia 2016 (Clinicaltrials.gov Identifier NCT02841540) https://clinicaltrials.gov/ct2/show/NCT02841540?cond=NCT02841540&rank=1

  34. Steensma DP, Maris MB, Yang J et al (2017) H3B-8800-G0001-101: a first in human phase I study of a splicing modulator in patients with advanced myeloid malignancies. J Clin Oncol 35(15_suppl):TPS7075. https://doi.org/10.1200/JCO.2017.35.15_suppl.TPS7075

    Article  Google Scholar 

Download references

Funding

The present work was supported by CIMAGO - Center of Investigation on Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Portugal, by funds from FEDER through the Operational Program Competitiveness Factors - COMPETE, and by Portuguese funds through FCT - Foundation for Science and Technology. Raquel Alves was supported by Portuguese Foundation to Science and Technology (FCT) with a PhD Grant (SFRH/BD/51994/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cristina Gonçalves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

Studies of animal models were not performed. This article does not contain any studies with human participants.

Informed consent

This article does not contain any studies with human participants.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jorge, J., Petronilho, S., Alves, R. et al. Apoptosis induction and cell cycle arrest of pladienolide B in erythroleukemia cell lines. Invest New Drugs 38, 369–377 (2020). https://doi.org/10.1007/s10637-019-00796-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-019-00796-2

Keywords

Navigation