Skip to main content

Advertisement

Log in

Electroretinographic (ERG) responses in pediatric patients using vigabatrin

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The antiepileptic drug vigabatrin is known to cause retinal and visual dysfunction, particularly visual field defects, in some patients. Electroretinography (ERG) is used in an attempt to identify adverse effects of vigabatrin (VGB) in patients who are not candidates for conventional perimetry. We report data from 114 pediatric patients taking VGB referred for clinical evaluation; median age at test was 22.9 (2.4 to 266.1) months, and median duration of VGB use was 9.7 (0.3 to 140.7) months. Twenty-seven of them were tested longitudinally (3 to 12 ERG tests). ERG responses to full-field stimuli were recorded in scotopic and photopic conditions, and results were compared to responses from healthy control subjects. We found that abnormalities of photoreceptor and post-receptor ERG responses are frequent in these young patients. The most frequently abnormal scotopic parameter was post-receptor sensitivity, log σ, derived from the b-wave stimulus-response function; the most frequently abnormal photopic parameter was the implicit time of the OFF response (d-wave) to a long (150 ms) flash. Abnormal 30-Hz flicker response amplitude, previously reported to be a predictor of visual field loss, occurred infrequently. For the group as a whole, none of the ERG parameters changed significantly with increasing duration of VGB use. Four of the 27 patients tested longitudinally showed systematic worsening of log σ with duration of VGB use. In a subset of patients who underwent perimetry (N = 39), there was no significant association of any ERG parameter with visual field defects. We cannot determine whether the ERG abnormalities we found were due solely to the effects of VGB. We caution against over-reliance on the ERG to monitor pediatric patients for VGB toxicity and recommend further development of a reliable test of peripheral vision to supplant ERG testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sabril (vigabatrin) Advisory Committee Briefing Document (2009) Ovation Pharmaceuticals. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PeripheralandCentralNervousSystemDrugsAdvisoryCommittee/UCM153780.pdf

  2. Kramer G, Wohlrab G (2008) Vigabatrin. In: Pellock JM, Bourgeois BFD, Dodson WE (eds) Pediatric epilepsy: diagnosis and therapy. Demos Medical Publishing, New York, pp 699–709

    Google Scholar 

  3. Royal College of Ophthalmologists (2008) The ocular side-effects of vigabatrin (Sabril). Information and Guidance for Screening, London

    Google Scholar 

  4. Sergott RC, Wheless JW, Smith MC, Westall CA, Kardon RH, Arnold A, Foroozan R, Sagar SM (2010) Evidence-based review of recommendations for visual function testing in patients treated with vigabatrin. Neuro-ophthalmology 34:20–35

    Article  Google Scholar 

  5. Eke T, Talbot JF, Lawden MC (1997) Severe persistent visual field constriction associated with vigabatrin. BMJ 314:180–181

    Article  PubMed  CAS  Google Scholar 

  6. Johnson MA, Krauss GL, Miller NR, Medura M, Paul SR (2000) Visual function loss from vigabatrin: effect of stopping the drug. Neurology 55:40–45

    Article  PubMed  CAS  Google Scholar 

  7. Graniewski-Wijnands HS, van der Torren K (2002) Electro-ophthalmological recovery after withdrawal from vigabatrin. Doc Ophthalmol 104:189–194

    Article  PubMed  Google Scholar 

  8. Maguire MJ, Hemming K, Wild JM, Hutton JL, Marson AG (2010) Prevalence of visual field loss following exposure to vigabatrin therapy: a systematic review. Epilepsia 51:2423–2431

    Article  PubMed  Google Scholar 

  9. Wild JM, Chiron C, Ahn H, Baulac M, Bursztyn J, Gandolfo E, Goldberg I, Goni FJ, Mercier F, Nordmann JP, Safran AB, Schiefer U, Perucca E (2009) Visual field loss in patients with refractory partial epilepsy treated with vigabatrin: final results from an open-label, observational, multicentre study. CNS Drugs 23:965–982

    Article  PubMed  CAS  Google Scholar 

  10. Clayton LM, Devile M, Punte T, Kallis C, de Haan GJ, Sander JW, Acheson J, Sisodiya SM (2011) Retinal nerve fiber layer thickness in vigabatrin-exposed patients. Ann Neurol 69:845–854

    Article  PubMed  CAS  Google Scholar 

  11. Durbin S, Mirabella G, Buncic JR, Westall CA (2009) Reduced grating acuity associated with retinal toxicity in children with infantile spasms on vigabatrin therapy. Invest Ophthalmol Vis Sci 50:4011–4016

    Article  PubMed  Google Scholar 

  12. Miller NR, Johnson MA, Paul SR, Girkin CA, Perry JD, Endres M, Krauss GL (1999) Visual dysfunction in patients receiving vigabatrin: clinical and electrophysiologic findings. Neurology 53:2082–2087

    Article  PubMed  CAS  Google Scholar 

  13. Paul SR, Krauss GL, Miller NR, Medura MT, Miller TA, Johnson MA (2001) Visual function is stable in patients who continue long-term vigabatrin therapy: implications for clinical decision making. Epilepsia 42:525–530

    Article  PubMed  CAS  Google Scholar 

  14. Daneshvar H, Racette L, Coupland SG, Kertes PJ, Guberman A, Zackon D (1999) Symptomatic and asymptomatic visual loss in patients taking vigabatrin. Ophthalmology 106:1792–1798

    Article  PubMed  CAS  Google Scholar 

  15. Harding GF, Wild JM, Robertson KA, Rietbrock S, Martinez C (2000) Separating the retinal electrophysiologic effects of vigabatrin: treatment versus field loss. Neurology 55:347–352

    Article  PubMed  CAS  Google Scholar 

  16. Spencer EL, Harding GF (2003) Examining visual field defects in the paediatric population exposed to vigabatrin. Doc Ophthalmol 107:281–287

    Article  PubMed  CAS  Google Scholar 

  17. Besch D, Kurtenbach A, Apfelstedt-Sylla E, Sadowski B, Dennig D, Asenbauer C, Zrenner E, Schiefer U (2002) Visual field constriction and electrophysiological changes associated with vigabatrin. Doc Ophthalmol 104:151–170

    Article  PubMed  Google Scholar 

  18. Coupland SG, Zackon DH, Leonard BC, Ross TM (2001) Vigabatrin effect on inner retinal function. Ophthalmology 108:1493–1496; discussion 1497-8

    Article  PubMed  CAS  Google Scholar 

  19. Comaish IF, Gorman C, Brimlow GM, Barber C, Orr GM, Galloway NR (2002) The effects of vigabatrin on electrophysiology and visual fields in epileptics: a controlled study with a discussion of possible mechanisms. Doc Ophthalmol 104:195–212

    Article  PubMed  CAS  Google Scholar 

  20. Jensen H, Sjo O, Uldall P, Gram L (2002) Vigabatrin and retinal changes. Doc Ophthalmol 104:171–180

    Article  PubMed  Google Scholar 

  21. McCoy B, Wright T, Weiss S, Go C, Westall CA (2011) Electroretinogram changes in a pediatric population with epilepsy: is vigabatrin acting alone? J Child Neurol 26:729–733

    Article  PubMed  Google Scholar 

  22. van der Torren K, Graniewski-Wijnands HS, Polak BC (2002) Visual field and electrophysiological abnormalities due to vigabatrin. Doc Ophthalmol 104:181–188

    Article  PubMed  Google Scholar 

  23. Westall CA, Logan WJ, Smith K, Buncic JR, Panton CM, Abdolell M (2002) The Hospital for Sick Children, Toronto, Longitudinal ERG study of children on vigabatrin. Doc Ophthalmol 104:133–149

    Article  PubMed  Google Scholar 

  24. Morong S, Westall CA, Nobile R, Buncic JR, Logan WJ, Panton CM, Abdolell M (2003) Longitudinal changes in photopic OPs occurring with vigabatrin treatment. Doc Ophthalmol 107:289–297

    Article  PubMed  Google Scholar 

  25. Westall CA, Nobile R, Morong S, Buncic JR, Logan WJ, Panton CM (2003) Changes in the electroretinogram resulting from discontinuation of vigabatrin in children. Doc Ophthalmol 107:299–309

    Article  PubMed  Google Scholar 

  26. Mayer DL, Hansen RM, Moore BD, Kim S, Fulton AB (2001) Cycloplegic refractions in healthy children aged 1 through 48 months. Arch Ophthalmol 119:1625–1628

    PubMed  CAS  Google Scholar 

  27. Zadnik K, Manny RE, Yu JA, Mitchell GL, Cotter SA, Quiralte JC, Shipp M, Friedman NE, Kleinstein RN, Walker TW, Jones LA, Moeschberger ML, Mutti DO (2003) Ocular component data in schoolchildren as a function of age and gender. Optom Vis Sci 80:226–236

    Article  PubMed  Google Scholar 

  28. McDonald MA, Dobson V, Sebris SL, Baitch L, Varner D, Teller DY (1985) The acuity card procedure: a rapid test of infant acuity. Invest Ophthalmol Vis Sci 26:1158–1162

    PubMed  CAS  Google Scholar 

  29. Salomao SR, Ventura DF (1995) Large sample population age norms for visual acuities obtained with Vistech-Teller Acuity Cards. Invest Ophthalmol Vis Sci 36:657–670

    PubMed  CAS  Google Scholar 

  30. Agrawal S, Mayer DL, Hansen RM, Fulton AB (2009) Visual fields in children treated with vigabatrin. Optom Vis Sci 86:767–773

    Article  PubMed  Google Scholar 

  31. Mayer DL, Fulton AB (2004) Visual fields. In: Taylor D, Hoyt CS (eds) Pediatric Ophthalmology and Strabismus. Elsevier Saunders, New York, pp 78–86

    Google Scholar 

  32. Wali N, Leguire LE (1992) The photopic hill: a new phenomenon of the light adapted electroretinogram. Doc Ophthalmol 80:335–345

    Article  PubMed  CAS  Google Scholar 

  33. Elias ER, Hansen RM, Irons M, Quinn NB, Fulton AB (2003) Rod photoreceptor responses in children with Smith–Lemli–Opitz syndrome. Arch Ophthalmol 121:1738–1743

    Article  PubMed  Google Scholar 

  34. Garry D, Hansen RM, Moskowitz A, Elias ER, Irons M, Fulton AB (2010) Cone ERG responses in patients with Smith–Lemli–Opitz Syndrome (SLOS). Doc Ophthalmol 121:85–91

    Article  PubMed  Google Scholar 

  35. Wongpichedchai S, Hansen RM, Koka B, Gudas VM, Fulton AB (1992) Effects of halothane on children’s electroretinograms. Ophthalmology 99:1309–1312

    PubMed  CAS  Google Scholar 

  36. Fulton AB, Hansen RM (2000) The development of scotopic sensitivity. Invest Ophthalmol Vis Sci 41:1588–1596

    PubMed  CAS  Google Scholar 

  37. Hansen RM, Fulton AB (2005) Development of the cone ERG in infants. Invest Ophthalmol Vis Sci 46:3458–3462

    Article  PubMed  Google Scholar 

  38. Lamb TD, Pugh EN Jr (1992) A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol 449:719–758

    PubMed  CAS  Google Scholar 

  39. Pugh EN Jr, Lamb TD (1993) Amplification and kinetics of the activation steps in phototransduction. Biochim Biophys Acta 1141:111–149

    Article  PubMed  CAS  Google Scholar 

  40. Hood DC, Birch DG (1994) Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. Invest Ophthalmol Vis Sci 35:2948–2961

    PubMed  CAS  Google Scholar 

  41. Aleman TS, LaVail MM, Montemayor R, Ying G, Maguire MM, Laties AM, Jacobson SG, Cideciyan AV (2001) Augmented rod bipolar cell function in partial receptor loss: an ERG study in P23H rhodopsin transgenic and aging normal rats. Vis Res 41:2779–2797

    Article  PubMed  CAS  Google Scholar 

  42. Wurziger K, Lichtenberger T, Hanitzsch R (2001) On-bipolar cells and depolarising third-order neurons as the origin of the ERG-b-wave in the RCS rat. Vis Res 41:1091–1101

    Article  PubMed  CAS  Google Scholar 

  43. Peachey NS, Alexander KR, Fishman GA (1989) The luminance-response function of the dark-adapted human electroretinogram. Vis Res 29:263–270

    Article  PubMed  CAS  Google Scholar 

  44. Friedburg C, Allen CP, Mason PJ, Lamb TD (2004) Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram. J Physiol 556:819–834

    Article  PubMed  CAS  Google Scholar 

  45. Hood DC, Birch DG (1995) Phototransduction in human cones measured using the alpha-wave of the ERG. Vis Res 35:2801–2810

    Article  PubMed  CAS  Google Scholar 

  46. Sieving PA (1993) Photopic ON- and OFF-pathway abnormalities in retinal dystrophies. Trans Am Ophthalmol Soc 91:701–773

    PubMed  CAS  Google Scholar 

  47. McCulloch DL, Hamilton R (2010) Essentials of photometry for clinical electrophysiology of vision. Doc Ophthalmol 121:77–84

    Article  PubMed  Google Scholar 

  48. Fulton AB, Hansen RM, Moskowitz A, Akula JD (2009) The neurovascular retina in retinopathy of prematurity. Prog Retin Eye Res 28:452–482. Corrigendum 2010;29:94

    Article  PubMed  Google Scholar 

  49. Whitmore GA (1986) Prediction limits for a univariate normal observation. Am Stat 40:141–143

    Google Scholar 

  50. Cooper LL, Hansen RM, Darras BT, Korson M, Dougherty FE, Shoffner JM, Fulton AB (2002) Rod photoreceptor function in children with mitochondrial disorders. Arch Ophthalmol 120:1055–1062

    PubMed  Google Scholar 

  51. Willmore LJ, Abelson MB, Ben-Menachem E, Pellock JM, Shields WD (2009) Vigabatrin: 2008 update. Epilepsia 50:163–173

    Article  PubMed  CAS  Google Scholar 

  52. Wild JM, Robson CR, Jones AL, Cunliffe IA, Smith PE (2006) Detecting vigabatrin toxicity by imaging of the retinal nerve fiber layer. Invest Ophthalmol Vis Sci 47:917–924

    Article  PubMed  Google Scholar 

  53. Schechter PJ, Tranier Y, Jung MJ, Bohlen P (1977) Audiogenic seizure protection by elevated brain GABA concentration in mice: effects of gamma-acetylenic gaba and gamma-vinyl GABA, two irreversible GABA-T inhibitors. Eur J Pharmacol 45:319–328

    Article  PubMed  CAS  Google Scholar 

  54. Sills GJ, Butler E, Forrest G, Ratnaraj N, Patsalos PN, Brodie MJ (2003) Vigabatrin, but not gabapentin or topiramate, produces concentration-related effects on enzymes and intermediates of the GABA shunt in rat brain and retina. Epilepsia 44:886–892

    Article  PubMed  CAS  Google Scholar 

  55. Hood DC, Birch DG, Birch EE (1993) Use of models to improve hypothesis delineation: A study of infant electroretinography. In: Simons K (ed) Early visual development—normal and abnormal. Oxford University Press, New York, pp 517–535

    Google Scholar 

  56. Garry DJ, Coulter HD, McIntee TJ, Wu JY, Sorenson RL (1987) Immunoreactive GABA transaminase within the pancreatic islet is localized in mitochondria of the B-cell. J Histochem Cytochem 35:831–836

    Article  PubMed  CAS  Google Scholar 

  57. Robson JG, Maeda H, Saszik SM, Frishman LJ (2004) In vivo studies of signaling in rod pathways of the mouse using the electroretinogram. Vis Res 44:3253–3268

    Article  PubMed  CAS  Google Scholar 

  58. Herrmann R, Heflin SJ, Hammond T, Lee B, Wang J, Gainetdinov RR, Caron MG, Eggers ED, Frishman LJ, McCall MA, Arshavsky VY (2011) Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA. Neuron 72:101–110

    Article  PubMed  CAS  Google Scholar 

  59. Ueno S, Kondo M, Niwa Y, Terasaki H, Miyake Y (2004) Luminance dependence of neural components that underlies the primate photopic electroretinogram. Invest Ophthalmol Vis Sci 45:1033–1040

    Article  PubMed  Google Scholar 

  60. Nie D, Di Nardo A, Han JM, Baharanyi H, Kramvis I, Huynh T, Dabora S, Codeluppi S, Pandolfi PP, Pasquale EB, Sahin M (2010) Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci 13:163–172

    Article  PubMed  CAS  Google Scholar 

  61. Good WV (2011) Measuring field loss in children administered vigabatrin: a problem in search of a solution. J AAPOS 15:411–412

    Article  PubMed  Google Scholar 

  62. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77

    Google Scholar 

Download references

Acknowledgments

We thank Professor Carol Westall for review and discussion of the data and Dr. Mitchell Brigell for critical review of an earlier version of the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Moskowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moskowitz, A., Hansen, R.M., Eklund, S.E. et al. Electroretinographic (ERG) responses in pediatric patients using vigabatrin. Doc Ophthalmol 124, 197–209 (2012). https://doi.org/10.1007/s10633-012-9320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-012-9320-7

Keywords

Navigation