Skip to main content

Advertisement

Log in

Structural and functional maturation of the retina of the albino Hartley guinea pig

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose Altricial animals, such as rats and mice, are born with their eyes closed, compared to precocial animals, such as guinea pigs and humans, which have their eyes opened at birth. The purpose of this study was to investigate if the retina of guinea pigs (precocial animal) is subjected to a postnatal maturation process similar to that previously reported for rodents. Methods Photopic and scotopic electroretinograms (ERG) and retinal histology were obtained from albino guinea pigs aged P1 to P75. Results Photopic ERG responses reached maximal amplitudes at P5 (a-and b-waves), that is 5 days (b-wave) to 10 days (a-wave) earlier than scotopic responses. However, the postnatal gain in b-wave amplitude was significantly (P < 0.05) more important for the cone (73.38 ± 4.4%) signal than for the rod (15.23 ± 3.96%), suggesting that the rod function is more mature at birth. Similarly, the short latency photopic oscillatory potential (ie: OP2) reached its maximal value 5 days (P10) earlier than its scotopic equivalent (P15), while the long latency OPs (ie: OP3, OP4), reached their maximal values nearly 20 days sooner in scotopic condition. Finally retinal histology revealed a thinning of the retina with age, the latter being most pronounced at the level of the ganglion cell layer (GCL). Conclusion Our results thus confirm that despite its relative maturity at birth (compared to rodents), the retina of newborn albino guinea pigs undergoes significant postnatal maturation modifying its structure as well as its function, albeit not as extensive as that previously documented for altricial animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hamasaki DI, Maguire GW (1985) Physiological development of the kitten’s retina: an ERG study. Vision Res 25:1537–1543

    Article  PubMed  CAS  Google Scholar 

  2. Jacobson SG, Ikeda H, Ruddock K (1987) Cone-mediated retinal function in cats during development. Doc Ophthalmol 65:7–14

    Article  PubMed  CAS  Google Scholar 

  3. Gum GG, Gelatt KN, Samuelson DA (1973) Maturation of the retina of the canine neonate as determined by electroretinography and histology. Am J Vet Res 45:1166–1171

    Google Scholar 

  4. Kirk GR, Boyer SF (1973) Maturation of the electroretinogram in the dog. Exp Neurol 38:252–264

    Article  PubMed  CAS  Google Scholar 

  5. El Azazi M, Wachtmeister L (1991) The postnatal development of the oscillatory potentials of the electroretinogram II: photopic characteristics. Acta Ophthalmol 69:6–10

    CAS  Google Scholar 

  6. El Azazi M, Wachtmeister L (1990) The postnatal development of the oscillatory potentials of the electroretinogram: basic characteristics. Acta Ophthalmol 68:401–409

    Article  CAS  Google Scholar 

  7. Kurihara H (1977) Developmental process of ERG of the albino rat. Jpn J Ophthalmol 81:1313–1320

    CAS  Google Scholar 

  8. Braekevelt C, Hollenberg M (1970) The development of the retina of the albino rat. Am J Anat 127:281–302

    Article  PubMed  CAS  Google Scholar 

  9. Gorfinkel J, Lachapelle P (1990) Maturation of the photopic b-wave and oscillatory potentials of the electroretinogram in the neonatal rabbit. Can J Ophthalmol 25:138–144

    PubMed  CAS  Google Scholar 

  10. Gorfinkel J, Lachapelle P, Molotchinikoff S (1988) Maturation of the electroretinogram of the neonatal rabbit. Doc Ophthalmol 69:237–245

    Article  PubMed  CAS  Google Scholar 

  11. Sanada T (1962) Study on the ERG on suckling rabbits. Report I. Development of the ERG (in dark adaptation). Jpn J Ophthalmol 66:1430–1436

    Google Scholar 

  12. Gresh J, Goletz PW, Crouch RK, Rohrer B (2003) Structure-function analysis of rods and cones in juvenile, adult, and age C57BL/6 and Balb/c mice. Vis Neurosci 20:211–220

    Article  PubMed  Google Scholar 

  13. Bonaventure N, Karli P (1968) Maturation des potentiels ERG et évoqués visuels chez la souris. C R Soc Biol (Paris) 161:553–555

    Google Scholar 

  14. Weidman TA, Kuwabara T (1968) Postnatal development of the rat retina. Arch Ophthalmol 79:470–484

    PubMed  CAS  Google Scholar 

  15. Spira AW (1975) In utero development and maturation of the retina of a non-primate mammal: a light and electron microscopic study of the guinea pig. Anat Embryol 14:279–300

    Article  Google Scholar 

  16. Ookawa T (1971a) The onset and development of the chick electroretinogram: the a- and b-waves. Poult Sci 50:601–608

    PubMed  CAS  Google Scholar 

  17. Ookawa T (1971b) Further studies on the ontogenetic development of the chick electroretinogram. Poult Sci 50:1185–1190

    PubMed  CAS  Google Scholar 

  18. Smelser GK, Ozanics V, Fayborn M, Sagun D (1974) Retinal synaptogenesis in the primate. Invest Ophthalmol Vis Sci 13:340–361

    CAS  Google Scholar 

  19. Spira AW, Hollenberg MJ (1973) Human retinal development: ultrastructure of the inner retinal layers. Dev Biol 31:1–21

    Article  PubMed  CAS  Google Scholar 

  20. Hollenberg JJ, Spira AW (1973) Human retinal development: ultrastructure of the outer retina. Am J Anat 137:357–386

    Article  PubMed  CAS  Google Scholar 

  21. Hollenberg JJ, Spira AW (1972) Early development of the human retina. Can J Ophthalmol 7:472–491

    PubMed  CAS  Google Scholar 

  22. Fulton AB, Graves AL (1980) Background adaptation in developing rat retina: an electroretinographic study. Vision Res 20:819–826

    Article  PubMed  CAS  Google Scholar 

  23. Woods JR, Parisi V, Coppes V, Brooks DE (1983) Maturation sequence of the visual system: serial measurements of visual evoked potential and electroretinogram in the healthy neonatal lamb. J Obstet Gynecol 145:738–743

    Google Scholar 

  24. Knave B, Moller A, Persson HE (1972) A component analysis of the electroretinogram. Vision Res 12:1669–1684

    Article  PubMed  CAS  Google Scholar 

  25. Horsten GPM, Winkelman JE (1960) Development of the ERG in relation to histological differentiation of the retina in man and animals. Arch Ophthalmol 63:232–242

    PubMed  CAS  Google Scholar 

  26. Mets MB, Smith VC, Pokorny J, Pass A (1995) Postnatal retinal development as measured by the electroretinogram in premature infants. Doc Ophthalmol 90:111–127

    Article  PubMed  CAS  Google Scholar 

  27. Rodriguez-Saez E, Otero-Costas J, Moreno-Montanes J, Relova JL (1993) Electroretinographic changes during childhood and adolescence. Eur J Ophthalmol 3:6–12

    PubMed  CAS  Google Scholar 

  28. Breton ME, Quinn GE, Schuller AW (1995) Development of electroretinogram and rod phototransduction response in human infants. Invest Ophthalmol Vis Sci 36:1588–1602

    PubMed  CAS  Google Scholar 

  29. Westall CA, Panton CM, Levin AV (1996) Time courses for maturation of electroretinogram responses form infancy to adulthood. Doc Ophthalmol 96:355–379

    Article  Google Scholar 

  30. Hamilton R, Dudgeon J, Gradnam MS, Mactier H (2005) Development of the electroretinogram between 30 and 50 weeks after conception. Early Hum Dev 81:461–464

    Article  PubMed  Google Scholar 

  31. Brecelj J (2003) From immature to mature pattern ERG and VEP. Doc Ophthalmol 107:215–224

    Article  PubMed  Google Scholar 

  32. Bui BV, Vingrys AJ (1999) Development of receptoral responses in pigmented and albino guinea pigs (Cavia porcellus). Doc Ophthalmol 99:151–170

    Article  PubMed  CAS  Google Scholar 

  33. Vingrys AJ, Bui BV (2001) Development of postreceptoral function in pigmented and albino guinea pigs. Vis Neurosci 18:605–613

    Article  PubMed  CAS  Google Scholar 

  34. Semple-Roland S, Dawson W (1987) Retinal cyclic light damage threshold for albino rats. Lab Ani Sci 37:289–298

    Google Scholar 

  35. Lachapelle P, Blain L (1990a) A new speculum electrode for electroretinography. J Neurosci Methods 32:245–249

    Article  PubMed  CAS  Google Scholar 

  36. Lachapelle P, Benoit J, Clain L, Guité P, Roy M (1990b) The oscillatory potentials in response to stimuli of photopic intensities delivered in dark adaptation: an explanation of the conditioning effect. Vision Res 30:503–513

    Article  PubMed  CAS  Google Scholar 

  37. Peachey N, Alexander R, Fishman G (1987a) Rod and cone system contribution to oscillatory potentials: an explanation for the conditioning effect. Vision Res 27:859–866

    Article  PubMed  CAS  Google Scholar 

  38. Racine J, Behn D, Simard E, Lachapelle P (2003) Spontaneous occurrence of a potentially night blinding disorder in guinea pigs. Doc Ophthalmol 107:59–69

    Article  PubMed  Google Scholar 

  39. Hébert M, Lachapelle P, Dumont M (1996) Reproducibility of electroretinograms recorded with DTL electrodes. Doc Ophthalmol 91:333–342

    Article  Google Scholar 

  40. Jutras S, et al. IOVS 1997; 38: ARVO Abstract S884

  41. Hansen RM, Fulton AB (2005) Development of the cone ERG in infants. Invest Ophthalmol Vis Sci 46:3458–3462

    Article  PubMed  Google Scholar 

  42. Winkelman J, Horsten G (1962) The ERG of premature and full term born infants during their first days of life. Ophthalmologica 143:92–101

    Article  PubMed  CAS  Google Scholar 

  43. Shipley T, Anton M (1964) The human electroretinogram in the first day of life. J Ped 65:733–739

    Article  CAS  Google Scholar 

  44. Huang J, Wyse J, Spira A (1990) Ontogenesis of the electroretinogram in a precocial mammal, the guinea pig (Cavia Porcellus). Comp Biochem Physiol 95A:149–155

    Article  Google Scholar 

  45. Webster MJ, Rowe MH (1991) Disruption of developmental timing in the albino rat retina. J Comp Neurol 307:160–174

    Article  Google Scholar 

  46. Weisse I (1995) Changes in the aging rat retina. Ophthalmic Res 27:154–163

    Article  PubMed  Google Scholar 

  47. Stone J, Egan M, Rapaport DH (1985) The site of commencement of retinal maturation in the rabbit. Vision Res 25:309–317

    Article  PubMed  CAS  Google Scholar 

  48. Legein C, Van Hof M (1970) The effect of light deprivation on the electroretinogram of the guinea pig. Pflugers Arch Gen Physiol 318:1–6

    Article  CAS  Google Scholar 

  49. Kojima M, Zrenner E (1978) Off-components in response to brief light flashes in the oscillatory potential of the human electroretinogram. Graefe Archiv Ophthalmol 206:107–120

    CAS  Google Scholar 

  50. King-Smith PE, Loffing DH, Jones R (1986) Rod and cone ERGs and their oscillatory potentials. Invest Ophthalmol Vis Sci 27:270–273

    PubMed  CAS  Google Scholar 

  51. Lachapelle P (1990c) A possible contribution of the optic nerve to the photopic oscillatory potentials. Clin Vision Sci 5:421–426

    Google Scholar 

  52. Lachapelle P, Benoit J, Guité P (1996) The effect of in vivo retinal cooling on the electroretinogram of the rabbit. Vision Res 36:339–344

    Article  PubMed  CAS  Google Scholar 

  53. Lachapelle P, Little JM, Polomeno RC (1983) The photopic electroretinogram in congenital stationary night blindness with myopia. Invest Ophthalmol Vis Sci 24:442–450

    PubMed  CAS  Google Scholar 

  54. Lachapelle P, Rousseau S, McKerral M, Benoit J, Polomeno RC, Koenekoop RK, Little JM (1998) Evidence supportive of a functional discrimination between photopic oscillatory potentials as revealed with cone and rod mediated retinopathies. Doc Ophthalmol 95:35–54

    Article  PubMed  CAS  Google Scholar 

  55. Racine J, Joly S, Rufiange M, Rosolen S, Lachapelle P (2005) The photopic ERG of the albino guinea pig (Cavia porcellus): a model of the human photopic ERG. Doc Ophthalmol 110:67–77

    Article  PubMed  Google Scholar 

  56. Miyake Y, Horiguchi M, Suzuki S, Kondo M, Tanikawa A (1996) Electrophysiological findings in patients with Oguchi’s disease. Jpn J Ophthalmol 40:511–519

    PubMed  CAS  Google Scholar 

  57. Miyake Y, Yagasaki K, Horiguchi M (1986) Congenital stationary night blindness with negative electroretinogram. Arch Ophthalmol 104:1013–1020

    PubMed  CAS  Google Scholar 

  58. Peachey NS, Fishman GA, Kilbride PE, Alexander KR, Keehan KM, Derlacki DJ (1990) A form of congenital stationary night blindness with apparent defect of rod phototransduction. Invest Ophthalmol Vis Sci 31:237–246

    PubMed  CAS  Google Scholar 

  59. Peachey NS, Fishman GA, Derlacki DJ, Brigell M (1987b) Psychophysical and electroretinographic findings in X-linked juvenile retinoschisis. Arch Ophthalmol 105:513–516

    PubMed  CAS  Google Scholar 

  60. Berson EL, Lessel S (1988) Paraneoplastic night blindness with malignant melanoma. Am J Ophthalmol 106:307–311

    Article  PubMed  CAS  Google Scholar 

  61. Tremblay F, Laroche RG, Becker I (1995) The electroretinographic diagnosis of the incomplete form of congenital stationary night blindness. Vison Res 35:2383–2393

    Article  CAS  Google Scholar 

  62. Kimura A, Nemoto H, Nishimiya J, Yuasa T, Hiroko Y (2004) Spinocerebellar degeneration with negative electroretinogram: dysfunction of the bipolar cells. Doc Ophthalmol 108:241–247

    Article  PubMed  Google Scholar 

  63. Kong J, Gouras P (2003) The effect of body temperature on murine electroretinogram. Doc Ophthalmol 106:239–242

    Article  PubMed  Google Scholar 

  64. Mizota A, Adachi-Usami E (2002) Effect of body temperature on electroretinogram of mice. Invest Ophthalmol Vis Sci 43:3754–3757

    PubMed  Google Scholar 

  65. Loeliger M, Rees S (2005) Immunocytochemical development of the guinea pig retina. Exp Eye Res 80:1–13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lachapelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Racine, J., Behn, D. & Lachapelle, P. Structural and functional maturation of the retina of the albino Hartley guinea pig. Doc Ophthalmol 117, 13–26 (2008). https://doi.org/10.1007/s10633-007-9098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-007-9098-1

Keywords

Navigation