Skip to main content
Log in

Supervisory control to maximize mean time to failure in discrete event systems

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate the use of supervisory control to maximize mean time to failure in a discrete event system framework. A complex engineering system is modeled as a discrete event system. Some of the states of the system are essential to the functionality of the system and are called required states. Some other states represent failures in the system and are called failure states. The control objective is to maximize the mean time to failure (MTTF) while allowing the system to visit all required states. The control is achieved by a supervisor that disables some controllable events based on monitoring the observable events as in classical supervisory control. To design such a supervisor, the MTTF of a supervised system is calculated by converting a discrete event system into a Markov chain having the same MTTF. Based on MTTF, two algorithms are developed that together allow us to design an optimal supervisor. The theoretical results are applied to power systems by investigating the maintenance management of equipment such as transformers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ramadge PJ, Wonham WM (1987) Supervisory control of a class of discrete event processes. SIAM J Control Optim 25(1):206–230

    Article  MathSciNet  MATH  Google Scholar 

  • Lin F, Wonham WM (1988) On observability of discrete-event systems. Inform Sci 44(3):173–198

    Article  MathSciNet  MATH  Google Scholar 

  • Cieslak R, Desclaux C, Fawaz AS, Varaiya P (1988) Supervisory control of discrete-event processes with partial observations. IEEE Trans Autom Control 33(3):249–260

    Article  MATH  Google Scholar 

  • Rudie K, Wonham WM (1992) Think globally, act locally: decentralized supervisory control. IEEE Trans Autom Control 37(11):1692–1708

    Article  MathSciNet  MATH  Google Scholar 

  • Wonham WM, Cai K (2019) Supervisory control of discrete-event systems. Springer

    Book  MATH  Google Scholar 

  • Sampath M, Sengupta R, Lafortune S, Sinnamohideen K, Teneketzis D (1995) Diagnosability of discrete-event systems. IEEE Trans Autom Control 40(9):1555–1575

    Article  MathSciNet  MATH  Google Scholar 

  • Lin F (1994) Diagnosability of discrete event systems and its applications. Discret Event Dyn Syst 4(2):197–212

    Article  MATH  Google Scholar 

  • Yoo T-S, Lafortune S (2002) Polynomial-time verification of diagnosability of partially observed discrete-event systems. IEEE Trans Autom Control 47(9):1491–1495

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang S, Huang Z, Chandra V, Kumar R (2001) A polynomial algorithm for testing diagnosability of discrete-event systems. IEEE Trans Autom Control 46(8):1318–1321

    Article  MathSciNet  MATH  Google Scholar 

  • Lafortune S, Lin F, Hadjicostis CN (2018) On the history of diagnosability and opacity in discrete event systems. Annu Rev Control 45:257–266

    Article  MathSciNet  Google Scholar 

  • Wonham W, Cai K, Rudie K (2018) Supervisory control of discrete-event systems: a brief history. Annu Rev Control 45:250–256

    Article  MathSciNet  Google Scholar 

  • Cassandras CG Lafortune S (2009) Introduction to discrete event systems. Springer Sci Bus Media

  • Darling DA, Siegert A (1953) The first passage problem for a continuous markov process. Ann Math Stat 24(4):624–639

    Article  MathSciNet  MATH  Google Scholar 

  • Brown M Chaganty NR (1983) On the first passage time distribution for a class of markov chains. Annals Probab 1000–1008

  • Yao DD (1985) First-passage-time moments of markov processes. J Appl Probab 939–945

  • Hunter JJ (2018) The computation of the mean first passage times for markov chains. Linear Algebra Appl 549:100–122

    Article  MathSciNet  MATH  Google Scholar 

  • Jan ST Afzal R Khan AZ (2015) Transformer failures, causes & impact. In: International conference data mining, civil and mechanical engineering pp 49–52

  • Murugan R, Ramasamy R (2015) Failure analysis of power transformer for effective maintenance planning in electric utilities. Eng Fail Anal 55:182–192

    Article  Google Scholar 

  • Zhong J, Li W, Wang C, Yu J, Xu R (2016) Determining optimal inspection intervals in maintenance considering equipment aging failures. IEEE Trans Power Syst 32(2):1474–1482

    Google Scholar 

  • Christina A, Salam M, Rahman Q, Wen F, Ang S, Voon W (2018) Causes of transformer failures and diagnostic methods-a review. Renew Sust Energ Rev 82:1442–1456

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Robert Brandt for pointing us to the results on Markov chains and other inspiring discussions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Lin.

Ethics declarations

Competing Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 3

Appendix: Proof of Theorem 3

Start from the derivative of \(LP_{i}(s)\) in Eq. (23), let us take the second derivative of \(LP_{i}(s)\):

$$\begin{aligned} \displaystyle \frac{d^{2}LP_{i}(s)}{ds^{2}} =&- \sum \limits _{j \not = i, j=1}^{n-l} \frac{\lambda _{ij}}{\lambda _{ii}} E[(-\rho _{i})^{2} e^{-\rho _{i} s}] LP_{j}(s) - 2 \sum \limits _{j \not = i, j=1}^{n-l} \frac{\lambda _{ij}}{\lambda _{ii}} E[-\rho _{i} e^{-\rho _{i} s}] \frac{dLP_{i}(s)}{ds} \\&- \sum \limits _{j \not = i, j=1}^{n-l} \frac{\lambda _{ij}}{\lambda _{ii}} E[e^{-\rho _{i} s}] \frac{d^{2}LP_{j}(s)}{ds^{2}} - \sum \limits _{j =n-l+1}^{n} \frac{\lambda _{ij}}{\lambda _{ii}} E[(-\rho _{i})^{2} e^{-\rho _{i} s}] . \end{aligned}$$

Since

$$\begin{aligned}{} & {} \lim _{s \rightarrow 0} \frac{d^{2}LP_{i}(s)}{ds^{2}} = \lim _{s \rightarrow 0} \int _{0}^{\infty } (-x)^{2}e^{-xs} h_{i}(x)dx = \int _{0}^{\infty } x^{2} h_{i}(x)dx = E[(\pi _{i})^{2}] \\{} & {} \lim _{s \rightarrow 0} \frac{dLP_{i}(s)}{ds} = \lim _{s \rightarrow 0} \int _{0}^{\infty } (-x)e^{-xs} h_{i}(x)dx = - \int _{0}^{\infty } x h_{i}(x)dx = - E[\pi _{i}] = - \eta _{i} \\{} & {} \lim _{s \rightarrow 0} LP_{j}(s) = \lim _{s \rightarrow 0} \int _{0}^{\infty } e^{-xs} h_{i}(x)dx = \int _{0}^{\infty } h_{i}(x)dx = 1 \\{} & {} \lim _{s \rightarrow 0} E[(-\rho _{i})^{2} e^{-\rho _{i} s}] = E[(\rho _{i})^{2}] = 2 (\frac{1}{\lambda _{ii}})^{2} \\{} & {} \lim _{s \rightarrow 0} E[-\rho _{i} e^{-\rho _{i} s}] = \frac{1}{\lambda _{ii}} \\{} & {} \lim _{s \rightarrow 0} E[e^{-\rho _{i} s}] = 1, \end{aligned}$$

we have, by letting \(s \rightarrow 0\),

$$\begin{aligned} \displaystyle E[(\pi _{i})^{2}] =&- \sum \limits _{j \not = i, j=1}^{n-l} \frac{\lambda _{ij}}{\lambda _{ii}} 2 (\frac{1}{\lambda _{ii}})^{2} - 2 \sum \limits _{j \not = i, j=1}^{n-l} \frac{\lambda _{ij}}{\lambda _{ii}} \frac{1}{\lambda _{ii}} (- \eta _{i})\\&- \sum \limits _{j \not = i, j=1}^{n-l} \frac{\lambda _{ij}}{\lambda _{ii}} E[(\pi _{j})^{2}] - \sum \limits _{j =n-l+1}^{n} \frac{\lambda _{ij}}{\lambda _{ii}} 2 (\frac{1}{\lambda _{ii}})^{2} . \end{aligned}$$

In other words,

$$\begin{aligned} \sum _{j=1}^{n-l} \lambda _{ij} E\left[ (\pi _{j})^{2}\right]= & {} \lambda _{ii} E\left[ (\pi _{i})^{2}\right] + \sum _{j \not = i, j=1}^{n-l} \lambda _{ij} E\left[ (\pi _{j})^{2}\right] \\= & {} - 2 \sum _{j \not = i, j=1}^{n-l} \frac{\lambda _{ij}}{\lambda _{ii}^{2}} - 2 \sum _{j \not = i, j=1}^{n-l} \frac{\lambda _{ij}}{\lambda _{ii}} (- \eta _{i}) - 2 \sum _{j =n-l+1}^{n} \frac{\lambda _{ij}}{\lambda _{ii}^{2}} \\= & {} - 2 \sum _{j \not = i, j=1}^{n} \frac{\lambda _{ij}}{\lambda _{ii}^{2}} + 2 \sum _{j \not = i, j=1}^{n-l} \frac{\lambda _{ij}}{\lambda _{ii}} \eta _{i} \\{} & {} \!\!\!\displaystyle (\text {by Eq.~(19)}) \\= & {} 2 \frac{1}{\lambda _{ii}} + 2 \sum _{j \not = i, j=1}^{n-l} \frac{\lambda _{ij}}{\lambda _{ii}} \eta _{i} \\= & {} 2 \frac{1}{\lambda _{ii}} - 2 \eta _{i} + 2 \sum _{ j=1}^{n-l} \frac{\lambda _{ij}}{\lambda _{ii}} \eta _{i} . \end{aligned}$$

Since

$$ {\textbf {A}} \left[ \begin{array}{c} \eta _{1} \\ \eta _{2} \\ ... \\ \eta _{n-l} \end{array} \right] = - \left[ \begin{array}{c} 1 \\ 1 \\ ... \\ 1 \end{array} \right] , $$

we have

$$ 2 \sum _{ j=1}^{n-l} \frac{\lambda _{ij}}{\lambda _{ii}} \eta _{i} = 2 \frac{1}{\lambda _{ii}} \sum _{ j=1}^{n-l} \lambda _{ij} \eta _{i} = -2 \frac{1}{\lambda _{ii}}. $$

Hence,

$$\begin{aligned} \sum _{j=1}^{n-l} \lambda _{ij} E[(\pi _{j})^{2}] = 2 \frac{1}{\lambda _{ii}} - 2 \eta _{i} + 2 \sum _{ j=1}^{n-l} \frac{\lambda _{ij}}{\lambda _{ii}} \eta _{i} = - 2 \eta _{i}. \end{aligned}$$

In the matrix form

$$\begin{aligned} {\textbf {A}} \left[ \begin{array}{c} E[{\pi _{1}^{2}}] \\ E[{\pi _{2}^{2}}] \\ ... \\ E[\pi _{n-1}^{2}] \end{array} \right] = - 2 \left[ \begin{array}{c} \eta _{1} \\ \eta _{2} \\ ... \\ \eta _{n-l} \end{array} \right] = 2 {\textbf {A}}^{-1} \left[ \begin{array}{c} 1 \\ 1 \\ ... \\ 1 \end{array} \right] . \end{aligned}$$

Therefore,

$$\begin{aligned} \left[ \begin{array}{c} E[{\pi _{1}^{2}}] \\ E[{\pi _{2}^{2}}] \\ ... \\ E[\pi _{n-1}^{2}] \end{array} \right] = 2 {\textbf {A}}^{-2} \left[ \begin{array}{c} 1 \\ 1 \\ ... \\ 1 \end{array} \right] . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Wang, C., Nazari, M.H. et al. Supervisory control to maximize mean time to failure in discrete event systems. Discrete Event Dyn Syst 33, 105–127 (2023). https://doi.org/10.1007/s10626-023-00374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-023-00374-y

Keywords

Navigation