Skip to main content
Log in

High dimensional affine codes whose square has a designed minimum distance

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Given a linear code \({\mathcal {C}}\), its square code \({\mathcal {C}}^{(2)}\) is the span of all component-wise products of two elements of \({\mathcal {C}}\). Motivated by applications in multi-party computation, our purpose with this work is to answer the following question: which families of affine variety codes have simultaneously high dimension \(k({\mathcal {C}})\) and high minimum distance of \({\mathcal {C}}^{(2)}\), \(d({\mathcal {C}}^{(2)})\)? More precisely, given a designed minimum distance d we compute an affine variety code \({\mathcal {C}}\) such that \(d({\mathcal {C}}^{(2)})\ge d\) and the dimension of \({\mathcal {C}}\) is high. The best constructions we propose mostly come from hyperbolic codes. Nevertheless, for small values of d, they come from weighted Reed–Muller codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ben-Or M., Goldwasser S., Wigderson A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pp. 1–10, NY, USA (1988).

  2. Cascudo I.: On squares of cyclic codes. IEEE Trans. Inf. Theory 65(2), 1034–1047 (2019).

    Article  MathSciNet  Google Scholar 

  3. Cascudo I., Cramer R., Mirandola D., Zémor G.: Squares of random linear codes. IEEE Trans. Inf. Theory 61(3), 1159–1173 (2015).

    Article  MathSciNet  Google Scholar 

  4. Cascudo I., Gundersen J.S., Ruano D.: Squares of matrix-product codes. Finite Fields Appl. 62, 101606 (2020).

    Article  MathSciNet  Google Scholar 

  5. Chaum D., Crépeau C., Damgård I.: Multiparty unconditionally secure protocols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pp. 11–19, NY, USA (1988).

  6. Cramer R., Damgård I., Maurer U.: General secure multi-party computation from any linear secret-sharing scheme. In: Advances in cryptology EUROCRYPT 2000 (Bruges), volume 1807 of Lecture Notes in Comput. Sci., pp. 316–334. Springer, Berlin (2000).

  7. Cramer R., Damgård I., Nielsen J.B.: Secure Multiparty Computation and Secret Sharing, 1st edn. Cambridge University Press, New York (2015).

    Book  Google Scholar 

  8. Damgård I., Zakarias S.: Constant-overhead secure computation of boolean circuits using preprocessing. In: Proceedings of the 10th Theory of Cryptography Conference on Theory of Cryptography, TCC’13, pp. 621–641, Springer, Berlin (2013).

  9. Damgård I., Nielsen J.B., Nielsen M., Ranellucci S.: The TinyTable protocol for 2-party secure computation, or: gate-scrambling revisited. In: Advances in cryptology CRYPTO 2017. Part I, volume 10401 of Lecture Notes in Comput. Sci., pp. 167–187. Springer, Cham (2017).

  10. Feng G.-L., Rao T.R.N.: Improved geometric Goppa codes. I. Basic theory. Special issue on algebraic geometry codes. IEEE Trans. Inf. Theory 41(6), 1678–1693 (1995).

    Article  Google Scholar 

  11. Fitzgerald J., Lax R.F.: Decoding affine variety codes using Gröbner bases. Des. Codes Cryptogr. 13, 147–158 (1998).

    Article  MathSciNet  Google Scholar 

  12. Galindo C., Hernando F., Ruano D.: Stabilizer quantum codes from \(J\)-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process. 14(9), 3211–3231 (2015).

    Article  MathSciNet  Google Scholar 

  13. Geil O.: On the second weight of generalized Reed-Muller codes. Des. Codes Cryptogr. 48, 323–330 (2008).

    Article  MathSciNet  Google Scholar 

  14. Geil O., Høholdt T.: Footprints or generalized Bezout’s theorem. IEEE Trans. Inf. Theory 46(2), 635–641 (2000).

    Article  MathSciNet  Google Scholar 

  15. Geil O., Høholdt T.: On hyperbolic codes. Applied algebra, algebraic algorithms and error-correcting codes (Melbourne, 2001), pp. 159–171, Lecture Notes in Comput. Sci., 2227, Springer, Berlin (2001).

  16. Martínez-Bernal J., Pitones Y., Villarreal R.H.: Minimum distance functions of complete intersections. J. Algebra Appl. 17(11), 1850204 (2018).

    Article  MathSciNet  Google Scholar 

  17. Pellikaan R.: On decoding by error location and dependent sets of error positions. Discret. Math. 106–107, 369–381 (1992).

    Article  MathSciNet  Google Scholar 

  18. Randriambololona H.: Asymptotically good binary linear codes with asymptotically good self-intersection spans. IEEE Trans. Inf. Theory 59(5), 3038–3045 (2013).

    Article  MathSciNet  Google Scholar 

  19. Randriambololona H.: On products and powers of linear codes under component wise multiplication. In: Algorithmic Arithmetic, Geometry and Coding Theory, volume 637 of Contemp. Math., pp. 3-78, Amer. Math. Soc., Providence, RI (2015).

  20. Sørensen A.B.: Weighted Reed-Muller codes and algebraic-geometric codes. IEEE Trans. Inf. Theory 38(6), 1821–1826 (1992).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Márquez-Corbella.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the Spanish MICINN/FEDER Grant PGC2018-096446-B-C21, the Spanish MICINN PID2019-105896GB-I00, the Spanish MICINN PID2019-104844GB-I00, by the Spanish MINECO Grant RYC-2016-20208 (AEI/FSE/UE), MASCA (ULL Research Project) and by the Junta de CyL (Spain) Grant VA166G18.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Codes, Cryptology and Curves”.

Appendices

A For which affine codes \({\mathcal {C}}_A\) is it verified that \({\mathrm {FB}}({\mathcal {C}}_A) = d({\mathcal {C}}_A)\)?

Let \(A\subseteq [\![0,q-1]\!]^m\) and consider the code \({\mathcal {C}}_A\) as the affine variety code C(IL) with \(I=(0)\) and \(L={\mathbb {F}}_q[A]\). Then, we know that the length of \({\mathcal {C}}_A\) is \(q^m\) and its dimension coincides with the cardinality of the set A. Moreover its minimum distance, denoted as \(d({\mathcal {C}}_A)\), satisfies that \(d({\mathcal {C}}_A)\ge {\mathrm {FB}}({\mathcal {C}}_A)\). In this section we will study when these two values coincide. More concretely, we provide sufficient conditions to have the equality \(d({\mathcal {C}}_A) = {\mathrm {FB}}({\mathcal {C}}_A)\).

Lemma 6

Suppose that \({\mathrm {FB}}({\mathcal {C}}_A) = (q-\alpha _1)\cdots (q-\alpha _m)\). Then \(d({\mathcal {C}}_A) = {\mathrm {FB}}({\mathcal {C}}_A)\) if all the elements \(\beta = (\beta _1, \ldots , \beta _m)\) with \(0\le \beta _i \le \alpha _i\) belong to the set A.

Proof

First, to simplify the proof let us suppose that \(m=2\). Let \({\mathcal {P}} = \left\{ P_1, \ldots , P_n\right\} \) be the ordered enumeration of the \(q^2\) different points of \({\mathbb {F}}_q^2\). Suppose that \({\mathrm {FB}}({\mathcal {C}}_A) = (q-\alpha _1)(q-\alpha _2)\). Now we can define the polynomial

$$\begin{aligned} f(x) = (X_1-P_1) \cdots (X_1-P_{\alpha _1}) \cdot (X_2-P_1) \cdots (X_2-P_{\alpha _2}). \end{aligned}$$

Take notice that by hypothesis \(f(X_1, X_2) \in {\mathbb {F}}_q[A]\) since all the elements \(\beta = (\beta _1, \beta _2)\) with \(0\le \beta _1 \le \alpha _1\) and \(0\le \beta _2 \le \alpha _2\) belongs to the set A. Moreover, the \({\mathbb {F}}_q\)-roots of f are all the points of form:

$$\begin{aligned} \begin{array}{cccc} (P_i, z_2)&\hbox { and }&(z_1, P_j)&\hbox { with } i \in \{1, \ldots , \alpha _1\} \hbox { , } j \in \{1, \ldots , \alpha _2\} \hbox { and } z_1, z_2\in {\mathbb {F}}_q. \end{array} \end{aligned}$$

That is, the number of \({\mathbb {F}}_q\)-roots of f(x) is \((\alpha _1 + \alpha _2) q - \alpha _1 \alpha _2\). Therefore, we have found a codeword \({\mathbf {c}} = {\mathrm {ev}}_{{\mathcal {P}}} (f)\in {\mathcal {C}}_A\) of weight \(q^2 - (\alpha _1 + \alpha _2) q - \alpha _1 \alpha _2 = {\mathrm {FB}}({\mathcal {C}}_A)\). Hence the minimum distance of \({\mathcal {C}}_A\) is \( {\mathrm {FB}}({\mathcal {C}}_A)\).

The generalization to m variables is straightforward. Let \({\mathcal {P}} = \left\{ P_1, \ldots , P_n\right\} \) be the ordered enumeration of the \(q^m\) different points of \({\mathbb {F}}_q^m\). Then, using all the hypothesis we can define the following polynomial in \({\mathbb {F}}_q[A]\):

$$\begin{aligned} f(X_1, \ldots , X_m) = \prod _{i=1}^m (X_i - P_1) \cdots (X_i - P_{\alpha _i}) \in {\mathbb {F}}_q[A]. \end{aligned}$$

Thus, we have found a codeword of \({\mathcal {C}}_A\) of weight \({\mathrm {FB}}({\mathcal {C}}_A)\), hence \(d({\mathcal {C}}_A) = {\mathrm {FB}}({\mathcal {C}}_A)\).\(\square \)

The following result shows that if l is a divisor of \(q-1\) then, there exists a polynomial \(f(x) = X^l-\alpha \in {\mathbb {F}}_q[X]\) with small support but a large number of \({\mathbb {F}}_q\)-roots. This result will be useful for computing the minimum distance of codes of type \({\mathcal {C}}_A\) by just checking that a very small number of points belongs to the set A.

Lemma 7

Let \(\alpha \) be a primitive element of \({\mathbb {F}}_q^*\). Consider the polynomial \(f(X) = X^l-\alpha ^j \in {\mathbb {F}}_q[X]\). Then \(X^l-\alpha ^j\) has at least one root in \({\mathbb {F}}_q\) if and only if \(\gcd (l, q-1)\) divides j. In such case, the exactly number of \({\mathbb {F}}_q\)-roots of f(X) is \(\gcd (l,q-1)\).

Proof

Suppose that \(\alpha ^i\) is an \({\mathbb {F}}_q\)-root of f(X), then \(f(\alpha ^i) = 0\), that is \(\alpha ^{il} = \alpha ^j\) which implies that the order of \(\alpha \), which is \(q-1\), divides \(il-1\). In other words, there exists an integer x such that \(x(q-1) + il = j\). Take notice that such x exists if and only if \(\gcd (l,q-1)\) divides j.

In such case, if (xy) is a solution of the equation \(x(q-1) + yl = j\). Then, all solutions of this equations has the form:

$$\begin{aligned} \left( x-\lambda \frac{l}{\gcd (l,q-1)}, y + \lambda \frac{q-1}{\gcd (l,q-1)} \right) \hbox { with } \lambda \in {\mathbb {Z}} \end{aligned}$$

Therefore, if f(X) has at least one root in \({\mathbb {F}}_q\), then it will have exactly \(\gcd (l,q-1)\)\({\mathbb {F}}_q\)-roots.\(\square \)

Corollary 1

Suppose that \({\mathrm {FB}}({\mathcal {C}}_A) = (q-l)q^{m-1}\) with l a divisor of \(q-1\). Then, \(d({\mathcal {C}}_A) = {\mathrm {FB}}({\mathcal {C}}_A)\) if \(\{1, X_i^l\}\subseteq {\mathbb {F}}_q[A]\) for some \(i\in \{1, \ldots , m\}\).

Proof

By hypothesis we can define the following polynomial in \({\mathbb {F}}_q[A]\):

$$\begin{aligned} f(X) = X_i^l - \beta \hbox { for certain }\beta \in {\mathbb {F}}_q. \end{aligned}$$

Then, by Lemma 7, f(X) has \(lq^{m-1}\)\({\mathbb {F}}_q\)-roots. That is, we have found a codeword of \({\mathcal {C}}_A\) of weight \({\mathrm {FB}}({\mathcal {C}}_A)\), hence \(d({\mathcal {C}}_A) = {\mathrm {FB}}({\mathcal {C}}_A)\).\(\square \)

Lemma 8

Suppose that \({\mathrm {FB}}({\mathcal {C}}_A) = (q-kl)q^{m-1}\) with l a divisor of \(q-1\). Then, \(d({\mathcal {C}}_A) = {\mathrm {FB}}({\mathcal {C}}_A)\) if \(\{1, X_i^l, X_i^{2l}, \ldots , X_i^{kl}\}\subseteq {\mathbb {F}}_q[A]\) for some \(i\in \{1, \ldots , m\}\).

Proof

By hypothesis we can define the following polynomial in \({\mathbb {F}}_q[A]\):

$$\begin{aligned} f(X) = (X_i^l - \beta ) (X_i^{2l}-\beta ^2) \cdots (X_i^{kl} - \beta ^k) \hbox { for certain }\beta \in {\mathbb {F}}_q. \end{aligned}$$

Then, by Lemma 7, f(X) has \(klq^{m-1}\)\({\mathbb {F}}_q\)-roots. That is, we have found a codeword of \({\mathcal {C}}_A\) of weight \({\mathrm {FB}}({\mathcal {C}}_A)\), hence \(d({\mathcal {C}}_A) = {\mathrm {FB}}({\mathcal {C}}_A)\).\(\square \)

Lemma 9

Suppose that \({\mathrm {FB}}({\mathcal {C}}_A) = (q-l_1)\cdots (q-l_m)\) with \(l_i\) a divisor of \(q-1\). Then, \(d({\mathcal {C}}_A) = {\mathrm {FB}}({\mathcal {C}}_A)\) if \(\{1, X_1^{l_1}, \cdots , X_m^{l_m}\}\subseteq {\mathbb {F}}_q[A]\).

Proof

By hypothesis we can define the following polynomial in \({\mathbb {F}}_q[A]\):

$$\begin{aligned} f(X) = \prod _{i=1}^m( X_i^{l_i} - \beta _i) \hbox { for certain }\beta _1, \ldots , \beta _m \in {\mathbb {F}}_q. \end{aligned}$$

Then, by Lemma 7, f(X) has

$$\begin{aligned} (l_1 + \ldots l_m) q^{m-1} - \sum _{1\le i< j\le m} l_i l_j q^{m-2} - \sum _{1\le i< j<k\le m} l_i l_jl_k q^{m-3} - \ldots - l_1 \cdots l_m \end{aligned}$$

\({\mathbb {F}}_q\)-roots. That is, we have found a codeword of \({\mathcal {C}}_A\) of weight \({\mathrm {FB}}({\mathcal {C}}_A)\), hence \(d({\mathcal {C}}_A) = {\mathrm {FB}}({\mathcal {C}}_A)\).\(\square \)

Lemma 10

Suppose that \({\mathrm {FB}}({\mathcal {C}}_A) = (q-k_1l_1)\cdots (q-k_ml_m)\) with \(l_i\) a divisor of \(q-1\). Then, \(d({\mathcal {C}}_A) = {\mathrm {FB}}({\mathcal {C}}_A)\) if \(\{1, X_1^{l_1}, \ldots , X_1^{ml_1}, \cdots , X_m^{l_m}, \ldots , X_m^{k_ml_m}\}\subseteq {\mathbb {F}}_q[A]\).

Proof

By hypothesis we can define the following polynomial in \({\mathbb {F}}_q[A]\):

$$\begin{aligned} f(X) = \prod _{i=1}^m( X_i^{l_i} - \beta _i) (X_i^{2l_i}-\beta _i^2) \cdots (X_i^{k_il_i} - \beta _i^{k_i}) \hbox { for certain }\beta _1, \ldots , \beta _m \in {\mathbb {F}}_q. \end{aligned}$$

Then, by Lemma 7, we have found a codeword of \({\mathcal {C}}_A\) of weight \({\mathrm {FB}}({\mathcal {C}}_A)\), hence \(d({\mathcal {C}}_A) = {\mathrm {FB}}({\mathcal {C}}_A)\).\(\square \)

Lemma 11

Suppose that \({\mathrm {FB}}({\mathcal {C}}_A) = (q-l)q^{m-1}\) with \(l-1\) a divisor of \(q-1\). Then, \(d({\mathcal {C}}_A) = {\mathrm {FB}}({\mathcal {C}}_A)\) if \(\{X_i, X_i^l\}\subseteq {\mathbb {F}}_q[A]\) for some \(i\in \{1, \ldots , m\}\).

Proof

By hypothesis we can define the following polynomial in \({\mathbb {F}}_q[A]\):

$$\begin{aligned} f(X) = (X_i^l - \beta X_i) = X_i (X_i^{l-1}-\beta ) \hbox { for certain }\beta \in {\mathbb {F}}_q. \end{aligned}$$

Then, by Lemma 7, f(X) has \(lq^{m-1}\)\({\mathbb {F}}_q\)-roots. That is, we have found a codeword of \({\mathcal {C}}_A\) of weight \({\mathrm {FB}}({\mathcal {C}}_A)\), hence \(d({\mathcal {C}}_A) = {\mathrm {FB}}({\mathcal {C}}_A)\).\(\square \)

Lemma 12

Let \(A\subseteq [\![0,q-1]\!]^m\) and \(s\in [\![0,q-1]\!]\). If for all \(f\in {\mathbb {F}}_q[A]\) we have that \(X_1^s\) is a divisor of f(X), then \(d({\mathcal {C}}_A) = d({\mathcal {C}}_B)\) with

$$\begin{aligned} B=\{ (i_1-s-1, i_2,\ldots , i_m)\mid (i_1, \ldots , i_m) \in A\}. \end{aligned}$$

The result can be generalized to any other coordinate \(X_i\) with \(i=2, \ldots , m\).

Proof

By hypothesis every polynomial \(f\in {\mathbb {F}}_q[A]\) can be written as \(f=X_1^s g\) with \(g\in {\mathbb {F}}_q[B]\). And both polynomials f and g have exactly the same number of \({\mathbb {F}}_q\)-roots.\(\square \)

B Proof of Theorem 3 when d is even

We consider now the case of Theorem 3 when the minimum distance d is even.

Theorem 4

Let \({\mathbb {F}}_q\) be a finite field and \(d \in {\mathbb {Z}}^+\) be an even integer with \(d < q\). If \({\mathcal {C}}\) is a weighted Reed–Muller code over \({\mathbb {F}}_q\) with \(d({\mathcal {C}}^{\, (2)}) \ge d\), then \(k({\mathcal {C}}) \le k({\mathcal {C}}_B),\) where \({\mathcal {C}}_B\) is any of the weighted Reed–Muller codes described in Lemma 5.

Proof

This proof will follow the same ideas in Theorem 3. Let \({\mathcal {C}}\) be a weighted Reed–Muller code over \({\mathbb {F}}_q\) with \(d({\mathcal {C}}^{\, (2)}) \ge d\). We assume without loss of generality that \({\mathcal {C}}= {\mathrm {WRM}}_q(\lambda ,2,\{w_1,1\})\) for some \(\lambda , w_1 > 0\). Taking

$$\begin{aligned} A := \{(i,j) \in [\![0, q-1 ]\!]\, \vert \, w_1 i + j \le \lambda \} \end{aligned}$$

we have that \({\mathcal {C}}= {\mathcal {C}}_A\).

In this proof we denote \(a:= (q-1)/2\) and \(b := (q-d+1)/2\); and observe that either \((a,b) \in {\mathbb {N}}^2\) or both \((a-\frac{1}{2}, b + \frac{1}{2}), (a+\frac{1}{2}, b - \frac{1}{2}) \in {\mathbb {N}}^2\). We divide the proof in two cases depending on the value of \(\lambda \).

Case I:\(\lambda \le a + b\). We take \(B = B_1\) as in Lemma 5. To prove that \(|A| = k({\mathcal {C}}) \le k({\mathcal {C}}_B) = |B|\) we are going to prove that either \(A \subseteq B\), or

$$\begin{aligned} \begin{array}{lccl} \varphi : &{} A - B &{}\ \longrightarrow \ &{} B - A \\ &{} (\alpha ,\beta ) &{} \mapsto &{} (2a-\alpha , 2b - \beta ) \end{array} \end{aligned}$$

is an injective map (see Fig. 9 for a graphic representation of this idea).

Fig. 9
figure 9

Figure illustrating the proof of Theorem 4 for \(d=6\), \(q=11\), \((a,b)=(5,3)\), \(A=\left\{ (i,j)\in {\mathbb {N}}^2 \mid 0.4 i + j \le 4 \right\} \) and \(B=\left\{ (i,j) \in {\mathbb {N}}^2 \mid i+j< 8\right\} \cup \left\{ (i,j) \in {\mathbb {N}}^2 \mid i+j = 8 \hbox { and } j<3\right\} \)

Since the injectivity of \(\varphi \) is easy to check, we are showing that \(\varphi \) is well defined in three steps:

  1. (a)

    if \((\alpha ,\beta ) \in A\), then \((2a-\alpha ,2b-\beta ) \notin A\),

  2. (b)

    if \((\alpha ,\beta ) \in A - B\), then \((2a-\alpha ,2b-\beta ) \in {\mathbb {N}}^2\), and

  3. (c)

    if \((\alpha ,\beta ) \in A - B\), then \((2a-\alpha ,2b-\beta ) \in B\).

If (a) does not hold, then both \((\alpha ,\beta )\) and \((2a-\alpha ,2b-\beta ) \in A\). Hence, \((2a,2b) = (\alpha ,\beta ) + (2a-\alpha ,2b-\beta ) \in A + A\) and \({\mathcal {C}}_A^{\, (2)} = {\mathcal {C}}_{A+A}\). Since \({\mathcal {C}}_A\) is a weighted Reed–Muller code, by Lemma 4 we have that \(d \le d({\mathcal {C}}^{\, (2)}) = {\mathrm {FB}}({\mathcal {C}}^{\, (2)}) \le (q-2a)(q-2b) = d-1\), a contradiction.

We observe that \((2a-\alpha ,2b-\beta ) \in {\mathbb {Z}}^2\) and that \(\alpha \le q-1 = 2a\), so to prove (b) we just need to see that \(2b - \beta \ge 0\). Assume that \(2b < \beta \) and let us prove that

  1. (b.1)

    \(P = (a,b) \in A\) if q is odd, or

  2. (b.2)

    \(Q_1 = (a - \frac{1}{2}, b + \frac{1}{2}),\ Q_2 = (a + \frac{1}{2}, b- \frac{1}{2}) \in A\) if q is even.

If \(\alpha > a\), then \(\alpha \ge a+\frac{1}{2}\) since \(\beta \ge 2b + 1 > b + \frac{1}{2}\) we have that \(P \in A\) in case (b.1) and \(Q_1, Q_2 \in A\) in case (b.2). If \(\alpha \le a\), from one side we have that \((\alpha , \beta ) \notin B\), so

$$\begin{aligned} \alpha + \beta \ge a+b \end{aligned}$$
(4)

and, if we have equality, then \(\beta \ge b\). From the other side we have that \((\alpha ,\beta ) \in A\), which implies that

$$\begin{aligned} w_1 \alpha + \beta \le \lambda . \end{aligned}$$
(5)

From (4) and (5) we get that

$$\begin{aligned} (w_1 - 1) \alpha + a + b \le (w_1 - 1) \alpha + \alpha + \beta = w_1 \alpha + \beta \le \lambda \le a + b \end{aligned}$$

and, thus, \(w_1 \le 1\). Hence, we separate three cases:

Subcase I.I. If \(\alpha + \beta > a + b\).

$$\begin{aligned} w_1(a+\tfrac{1}{2}) + b - \tfrac{1}{2} \le w_1 a + b< w_1 a + b + \tfrac{1}{2} < \alpha + \beta + (w_1-1)\alpha = w_1 \alpha + \beta \le \lambda . \end{aligned}$$

So, \(P \in A\) if q is odd, or both \(Q_1,Q_2 \in A\) if q is even.

Subcase I.II. If \(\alpha + \beta = a + b\) and q is odd. Since \(\beta \ge b\) and \(w_1 < 1\), we have that \(w_1(\alpha - a) + \beta - b \ge w_1 (\alpha - a + \beta - b) = 0\). As a consequence,

$$\begin{aligned} w_1 a + b \le w_1 a + b + w_1(\alpha - a) + \beta - b = w_1 \alpha + \beta \le \lambda . \end{aligned}$$

Therefore \(P \in A\).

Subcase I.III. If \(\alpha + \beta = a + b\) and q is even. Since \(\beta \ge b\) and \(b \notin {\mathbb {N}}\), then \(\beta \ge b + \frac{1}{2}\); moreover, \(w_1 < 1\), then we have that \(w_1(\alpha - a + \frac{1}{2}) + \beta - b - \frac{1}{2} \ge w_1 (\alpha - a + \frac{1}{2} + \beta - b - \frac{1}{2}) = 0\). As a consequence,

$$\begin{aligned} w_1(a+\tfrac{1}{2}) + b - \tfrac{1}{2}\le & {} w_1(a-\tfrac{1}{2}) + b + \tfrac{1}{2} \\\le & {} w_1(a-\tfrac{1}{2}) + b + \tfrac{1}{2} + w_1(\alpha - a + \tfrac{1}{2}) + \beta - b - \tfrac{1}{2} \\= & {} w_1 \alpha + \beta \le \lambda \end{aligned}$$

and we conclude that \(Q_1,Q_2 \in A\).

Moreover, since \(P + P = Q_1 + Q_2 = (2a,2b)\), in both cases we obtain that \((2a,2b) \in A+A\) and \({\mathcal {C}}_A^{\, (2)} = {\mathcal {C}}_{A+A}\). Since \({\mathcal {C}}_A\) is a weighted Reed–Muller code, by Lemma 4 we have that \(d \le d({\mathcal {C}}^{\, (2)}) \le (q-2a)(q-2b) = d-1\), a contradiction.

Let us prove now (c). Take \((\alpha ,\beta ) \in A-B\), then either

  1. (c.1)

    \(\alpha + \beta > a+b\), or

  2. (c.2)

    \(\alpha + \beta = a+b\) and \(\beta \ge b\).

In (c.1) we have that \(2a-\alpha + 2b-\beta < a+b\), so \((2a-\alpha ,2b-\beta ) \in B\). In (c.2) we observe that \(\beta \ne b\) because \((a,b) \notin A\). Then, we have that \(2a-\alpha + 2b-\beta = a+b\) and \(2b - \beta < b\), so \((2a-\alpha ,2b-\beta ) \in B\).

Case II:\(\lambda \ge a + b\). We claim that \(\frac{\lambda }{w_1} < a + b\). Otherwise, we have that \(P \in A\) if q is odd, or \(Q_1,Q_2 \in A\) if q is even. In both cases \((2a,2b) \in A + A\) and \({\mathcal {C}}_A^{\, (2)} = {\mathcal {C}}_{A+A}\). Since \({\mathcal {C}}_A\) is a weighted Reed–Muller code, by Lemma 4 we have that \(d \le d({\mathcal {C}}^{\, (2)}) \le (q-2a)(q-2b) = d-1\), a contradiction. Since \(\frac{\lambda }{w_1} < a + b\), then \(A = \{(i,j) \in {\mathbb {N}}^2 \, \vert \, 0 \le i,j \le q-1 {\text { and }} i + \frac{1}{w_1}{j} \le \frac{\lambda }{w_1}\}\) and a symmetric argument to Case I using \(B = B_2\) with \(B_2\) as in Lemma 5 applies here.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Marco, I., Márquez-Corbella, I. & Ruano, D. High dimensional affine codes whose square has a designed minimum distance. Des. Codes Cryptogr. 88, 1653–1672 (2020). https://doi.org/10.1007/s10623-020-00764-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00764-5

Keywords

Mathematics Subject Classification

Navigation