Skip to main content
Log in

On linear codes admitting large automorphism groups

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Linear codes with large automorphism groups are constructed. Most of them are suitable for permutation decoding. In some cases they are also optimal. For instance, we construct an optimal binary code of length \(n=252\) and dimension \(k=12\) having minimum distance \(d=120\) and automorphism group isomorphic to \(\text {PSL}(2,8)\rtimes \text {C}_{3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott R., Bray J., Linton S., Nickerson S., Norton S., Parker R., Suleiman I., Tripp J., Walsh P., Wilson R.: Atlas of finite group representations—version 3. http://brauer.maths.qmul.ac.uk/Atlas/v3. Accessed 1 July 2015.

  2. Berger T.P.: Cyclic alternant codes induced by an automorphism of a GRS code. In: Finite Fields: Theory, Applications, and Algorithms (Waterloo, ON, 1997), Contemporary Mathematics, vol. 225, pp. 143–154. American Mathematical Society, Providence (1999).

  3. Bierbrauer J.: Introduction to Coding Theory, Discrete Mathematics and Its Applications. Chapman & Hall/CRC, Boca Raton (2005).

  4. Bosma W., Cannon J.J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997).

  5. Braun M., Kohnert A., Wassermann A.: Optimal linear codes from matrix groups. IEEE Trans. Inf. Theory 51(12), 4247–4251 (2005).

  6. Camion P.: Linear codes with given automorphism groups. Discret. Math. 3, 33–45 (1972).

  7. Cossidente A., Nolè C., Sonnino A.: Cap codes arising from duality. Bull. Inst. Combin. Appl. 67, 33–42 (2013).

  8. Cossidente A., Sonnino A.: Finite geometry and the Gale transform. Discret. Math. 310(22), 3206–3210 (2010).

  9. Cossidente A., Sonnino A.: Some recent results in finite geometry and coding theory arising from the Gale transform. Rend. Mat. Appl. (7) 30(1), 67–76. (2010).

  10. Cossidente A., Sonnino A.: Linear codes arising from the Gale transform of distinguished subsets of some projective spaces. Discret. Math. 312(3), 647–651 (2012).

  11. Crnković D., Rukavina S., Simčić L.: Binary doubly-even self-dual codes of length 72 with large automorphism groups. Math. Commun. 18(2), 297–308 (2013).

  12. Fish W., Key J.D., Mwambene E.: Partial permutation decoding for simplex codes. Adv. Math. Commun. 6(4), 505–516 (2012).

  13. Giulietti M., Korchmáros G., Marcugini S., Pambianco F.: Transitive \(A_6\)-invariant \(k\)-arcs in \(PG(2, q)\). Des. Codes Cryptogr. 68(1–3), 73–79 (2013).

  14. Gordon D.M.: Minimal permutation sets for decoding the binary Golay codes. IEEE Trans. Inf. Theory 28(3), 541–543 (1982).

  15. Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed 2 Apr 2016.

  16. Higman G.: On the simple group of D. G. Higman and C. C. Sims. Ill. J. Math. 13, 74–80 (1969).

  17. Higman D.G., Sims C.C.: A simple group of order \(44,352,000\). Math. Z. 105, 110–113 (1968).

  18. Hill R.: On the largest size of cap in \(S_{5,\,3}\), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 54(1973), 378–384 (1974).

  19. Hill R.: A First Course in Coding Theory, Oxford Applied Mathematics and Computing Science Series. The Clarendon Press, Oxford University Press, New York (1986).

  20. Hirschfeld J.W.P., Korchmaros G., Torres F.: Algebraic Curves Over a Finite Field. Princeton University Press, Princeton (2008).

  21. Huffman W.C.: Codes and groups. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, part 2, vol. 2, pp. 1345–1440. North-Holland, Amsterdam (1998).

  22. Indaco L., Korchmáros G.: 42-arcs in \(PG(2, q)\) left invariant by \(PSL(2,7)\). Des. Codes Cryptogr. 64(1–2), 33–46 (2012).

  23. Key J.D.: Permutation decoding for codes from designs, finite geometries and graphs. In: Crnkovič D., Tonchev V. (eds.) Information Security, Coding Theory and Related Combinatorics. NATO Science for Peace and Security Series D: Information and Communication Security, vol. 29, pp. 172–201. IOS, Amsterdam (2011).

  24. Key J.D., McDonough T.P., Mavron V.C.: Partial permutation decoding for codes from finite planes. Eur. J. Comb. 26(5), 665–682 (2005).

  25. Key J.D., Moori J., Rodrigues B.G.: Permutation decoding for the binary codes from triangular graphs. Eur. J. Comb. 25(1), 113–123 (2004).

  26. Knapp W., Schaeffer H.-J.: On the codes related to the Higman–Sims graph. Electron. J. Comb. 22(1), P1–P19 (2015).

  27. Knapp W., Schmid P.: Codes with prescribed permutation group. J. Algebra 67(2), 415–435 (1980).

  28. Kohnert A.: Constructing two-weight codes with prescribed groups of automorphisms. Discret. Appl. Math. 155(11), 1451–1457 (2007).

  29. Kohnert A., Wassermann A.: Construction of binary and ternary self-orthogonal linear codes. Discret. Appl. Math. 157(9), 2118–2123 (2009).

  30. Kohnert A., Zwanzger J.: New linear codes with prescribed group of automorphisms found by heuristic search. Adv. Math. Commun. 3(2), 157–166 (2009).

  31. Korchmáros G., Pace N.: Infinite family of large complete arcs in \(\text{ PG }(2, q^n)\), with \(q\) odd and \(n>1\) odd. Des. Codes Cryptogr. 55(2–3), 285–296 (2010).

  32. Kramer E.S., Mesner D.M.: \(t\)-Designs on hypergraphs. Discret. Math. 15, 263–296 (1976).

  33. Kroll H.-J., Vincenti R.: PD-sets for the codes related to some classical varieties. Discret. Math. 301(1), 89–105 (2005).

  34. Kroll H.-J., Vincenti R.: Antiblocking systems and PD-sets. Discret. Math. 308(2–3), 401–407 (2008).

  35. Kroll H.-J., Vincenti R.: PD-sets for binary RM-codes and the codes related to the Klein quadric and to the Schubert variety of PG(5, 2). Discret. Math. 308(2–3), 408–414 (2008).

  36. MacWilliams F.J.: Permutation decoding of systematic codes. Bell System Tech. J. 43(1), 485–505 (1964).

  37. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. I. North-Holland Mathematical Library, vol. 16. North-Holland, Amsterdam (1977).

  38. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. II. North-Holland Mathematical Library, vol. 16. North-Holland, Amsterdam (1977).

  39. Martis M., Bamberg J., Morris S.: An enumeration of certain projective ternary two-weight codes. J. Comb. Des. 24(1), 21–35 (2016).

  40. Pace N.: New ternary linear codes from projectivity groups. Discret. Math. 331, 22–26 (2014).

  41. Pace N.: On small complete arcs and transitive \(A_5\)-invariant arcs in the projective plane \(PG(2, q)\). J. Comb. Des. 22(10), 425–434 (2014).

  42. Rodrigues B.G.: Self-orthogonal designs and codes from the symplectic groups \(S_4(3)\) and \(S_4(4)\). Discret. Math. 308(10), 1941–1950 (2008).

  43. Sonnino A.: Transitive PSL(2, 7)-invariant 42-arcs in 3-dimensional projective spaces. Des. Codes Cryptogr. 72(2), 455–463 (2014).

  44. Tolhuizen L.M.G.M., van Gils W.J.: A large automorphism group decreases the number of computations in the construction of an optimal encoder/decoder pair for a linear block code. IEEE Trans. Inf. Theory 34(2), 333–338 (1988).

Download references

Acknowledgments

N. Pace was supported by the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Proc. No. 12/03526-0. A. Sonnino was partially supported by the Italian Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) within the PRIN Project No. 2012XZE22K_006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Pace.

Additional information

Communicated by C. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pace, N., Sonnino, A. On linear codes admitting large automorphism groups. Des. Codes Cryptogr. 83, 115–143 (2017). https://doi.org/10.1007/s10623-016-0207-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-016-0207-6

Keywords

Mathematics Subject Classification

Navigation