Skip to main content
Log in

Cubic and higher degree bounds for codes and (t, m, s)-nets

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The Plotkin bound and the quadratic bound for codes and (t, m, s)-nets can be obtained from the linear programming bound using certain linear and quadratic polynomials, respectively. We extend this approach by considering cubic and higher degree polynomials to find new explicit bounds as well as new non-existence results for codes and (t, m, s)-nets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bierbrauer J.: A direct approach to linear programming bounds for codes and tms-nets. Des. Codes Cryptogr. 42(2), 127–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Delsarte P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. (10), 1–97 (1973).

  3. Hedayat A.S., Sloane N.J.A., Stufken J.: Orthogonal Arrays. Springer Series in Statistics. Springer-Verlag, New York (1999)

    Google Scholar 

  4. Lawrence K.M.: A combinatorial characterization of (t, m, s)-nets in base b. J. Comb. Des. 4(4), 275–293 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing Co., Amsterdam (1977)

    MATH  Google Scholar 

  6. Martin W.J., Stinson D.R.: Association schemes for ordered orthogonal arrays and (T, M, S)-nets. Canad. J. Math. 51(2), 326–346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Martin W.J., Visentin T.I.: A dual Plotkin bound for (T, M, S)-nets. IEEE Trans. Inform. Theory 53(1), 411–415 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mullen G.L., Schmid W.Ch.: An equivalence between (t, m, s)-nets and strongly orthogonal hypercubes. J. Comb. Theory Ser. A 76(1), 164–174 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Niederreiter H.: Low-discrepancy point sets. Monatsh. Math. 102(2), 155–167 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Niederreiter H.: Point sets and sequences with small discrepancy. Monatsh. Math. 104(4), 273–337 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Niederreiter H.: Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes. Discrete Math. 106/107, 361–367 (1992)

    Article  MathSciNet  Google Scholar 

  12. Rosenbloom M.Y., Tsfasman M.A.: Codes for the m-metric. Probl. Inform. Transm. 33(1), 55–63 (1997)

    Google Scholar 

  13. Schürer R., Schmid W.Ch.: MinT: a database for optimal net parameters. In: Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 457–469. Springer, Berlin (2006).

  14. Sobol′ I.M.: Distribution of points in a cube and approximate evaluation of integrals. Z̆. Vyčisl. Mat. i Mat. Fiz. 7, 784–802 (1967)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Trinker.

Additional information

Communicated by Juergen Bierbrauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinker, H. Cubic and higher degree bounds for codes and (t, m, s)-nets. Des. Codes Cryptogr. 60, 101–121 (2011). https://doi.org/10.1007/s10623-010-9420-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9420-x

Keywords

Mathematics Subject Classification (2000)

Navigation