Skip to main content
Log in

Constructions and bounds on linear error-block codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We obtain new bounds on the parameters and we give new constructions of linear error-block codes. We obtain a Gilbert–Varshamov type construction. Using our bounds and constructions we obtain some infinite families of optimal linear error-block codes over \(\mathbb{F}_2\). We also study the asymptotic of linear error-block codes. We define the real valued function α q,m,a (δ), which is an analog of the important real valued function α q (δ) in the asymptotic theory of classical linear error-correcting codes. We obtain both Gilbert–Varshamov and algebraic geometry type lower bounds on α q,m,a (δ). We compare these lower bounds in graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brualdi R., Graves J.S. and Lawrance M. (1995). Codes with a poset metric. Discrete Math. 147: 57–72

    Article  MATH  MathSciNet  Google Scholar 

  2. Bezerra J., Garcia A. and Stichtenoth H. (2005). An explicit tower of function fields over cubic finite fields and Zink’s lower bound. J. Reine Angew. Math. 589: 159–199

    MATH  MathSciNet  Google Scholar 

  3. Feng K., Xu L. and Hickernell F.J. (2006). Linear error-block codes. Finite Fields Appl. 12: 638–652

    Article  MathSciNet  Google Scholar 

  4. Hedayat A.S., Sloane N.J.A. and Stufken J. (1999). Orthogonal Arrays: Theory and Applications. Springer Series in Statistics, Springer, New York

    MATH  Google Scholar 

  5. Lee Y. (2004). Projective systems and perfect codes with a poset metric. Finite Fields Appl. 10: 105–112

    Article  MATH  MathSciNet  Google Scholar 

  6. MacWilliams F.J. and Sloane N.J.A. (1977). The Theory of Error-Correcting Codes. North-Holland, Amsterdam

    MATH  Google Scholar 

  7. Niederreiter H. (1987). Point sets and sequences with small discrepancy. Monatsh. Math. 104: 221–228

    Article  Google Scholar 

  8. Niederreiter H. and Xing C. (2001). Rational Points on Curves over Finite Fields: Theory and Applications. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  9. Tsfasman M.A. and Vlăduţ S.G. (1991). Algebraic-Geometric Codes. Kluwer, Dordrecht

    MATH  Google Scholar 

  10. Tsfasman M.A., Vlăduţ S.G. and Zink T. (1982). Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound. Math. Nachr. 109: 21–28

    Article  MATH  MathSciNet  Google Scholar 

  11. Xing C.P., Niederreiter H. and Lam K.Y. (1999). A generalization of algebraic-geometry codes. IEEE Trans. Inform. Theory 45: 2498–2501

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San Ling.

Additional information

Communicated by: G. McGuire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, S., Özbudak, F. Constructions and bounds on linear error-block codes. Des. Codes Cryptogr. 45, 297–316 (2007). https://doi.org/10.1007/s10623-007-9119-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9119-9

Keywords

AMS Classifications

Navigation