Skip to main content
Log in

Explicit constructions of separating hash families from algebraic curves over finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let X be a set of order n and Y be a set of order m. An (n,m,{w 1, w 2})-separating hash family is a set \(\mathcal {F}\) of N functions from X to Y such that for any \(X_1, X_2 \subseteq X\) with \(X_1\cap X_2=\emptyset\), |X 1| = w 1 and |X 2| = w 2, there exists an element \(f\in \mathcal {F}\) such that \(f(X_1)\cap f(X_2)=\emptyset\). In this paper, we provide explicit constructions of separating hash families using algebraic curves over finite fields. In particular, applying the Garcia–Stichtenoth curves, we obtain an infinite class of explicitly constructed (n,m,{w 1,w 2})–separating hash families with \(N=\mathcal {O}(\log\,n)\) for fixed m, w 1, and w 2. Similar results for strong separating hash families are also obtained. As consequences of our main results, we present explicit constructions of infinite classes of frameproof codes, secure frameproof codes and identifiable parent property codes with length \(N=\mathcal {O}(\log\,n)\) where n is the size of the codes. In fact, all the above explicit constructions of hash families and codes provide the best asymptotic behavior achieving the bound \(N=\mathcal {O}(\log\,n)\), which substantially improve the results in [ 8, 15, 17] give an answer to the fifth open problem presented in [11].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barg A, Cohen G, Encheva S, Kabatiansky G, Zémor G (2001) A hypergraph approach to the identifying parent property: the case of multiple parents. SIAM J Discrete Math 14:423–431

    Article  MATH  MathSciNet  Google Scholar 

  2. Boneh D, Shaw J (1998) Collusion–secure fingerprinting for digital data. IEEE Trans Inform Theor 44:1897–1905

    Article  MATH  MathSciNet  Google Scholar 

  3. Deng D, Stinson DR, Wei R (2004) The Lovász local lemma and its applications to some combinatorial arrays. Design Code Cryptogr 32:121–134

    Article  MATH  MathSciNet  Google Scholar 

  4. Garcia A, Stichtenoth H (1996) On the asymptotic behaviour of some towers of function fields over finite fields. J Number Theory 61:248–273

    Article  MATH  MathSciNet  Google Scholar 

  5. Hollmann HDL, van Lint JH (1998) Linnartz J-P, Tolhuizen LMGM (1998) On codes with identifiable parent property. J Comb Theory Ser A 82:121–133

    Article  MATH  Google Scholar 

  6. Li PC, van Rees GHJ, Wei R (2006) Constructions of 2–cover–free families and related separating hash families. J Comb Design Published Online: 21 Apr. 2006

  7. Niederreiter H, Xing C (2002) Rational points on curves over finite fields: theory and applications. Cambridge University Press, Cambridge, MA

    Google Scholar 

  8. Sarkar P, Stinson DR (2001) Frameproof and IPP Codes. In INDOCRYPT 2001. Lect Notes Comput Sci 2247:117–126

  9. Serre J-P (1985) Rational points on curves over finite fields. Lecture Notes, Harvard University

    Google Scholar 

  10. Stichtenoth H, (1993) Algebraic function fields and codes. Springer–Verlag, Berlin

    MATH  Google Scholar 

  11. Staddon JN, Stinson DR, Wei R (2001) Combinatorial properties of frameproof and traceability codes. IEEE Trans Inform Theory. 47:1042–1049

    Article  MATH  MathSciNet  Google Scholar 

  12. Stinson DR (1997) On some methods for unconditionally secure key distribution and broadcast encryption. Design Code Cryptogr 12:215–243

    Article  MATH  MathSciNet  Google Scholar 

  13. Stinson DR, van Trung T, Wei R (2000) Secure frameproof codes, key distribution patterns, group testing algorithms and related structures. J Statist Plann Inference 86:595–617

    Article  MATH  MathSciNet  Google Scholar 

  14. Stinson DR, Wei R (2004) Generalized cover-free families. Discrete Math 279:463–477

    Article  MATH  MathSciNet  Google Scholar 

  15. Stinson DR, Wei R, Zhu L (2000) New constructions for perfect hash families and related structures using combinatorial designs and codes. J Comb Designs 8:189–200

    Article  MATH  MathSciNet  Google Scholar 

  16. Tonien D, Safavi–Naini R (2003) Explicit construction of secure frameproof codes. Int J Pure App Math 6:343–360

    MathSciNet  Google Scholar 

  17. van Trung T, Martirosyan S (2005) New constructions for IPP codes. Design Code Cryptogr 35:227–239

    Article  MATH  Google Scholar 

  18. Tsfasman MA, Vlădut SG (1991) Algebraic–geometric codes. Kluwer Academic, Dordrecht

    Google Scholar 

  19. Wang H, Xing C (2001) Explicit constructions of perfect hash families from algebraic curves over finite fields. J Comb Theory Ser A, 93:112–124

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Liu.

Additional information

Communicated by S. Galbraith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Shen, H. Explicit constructions of separating hash families from algebraic curves over finite fields. Des Codes Crypt 41, 221–233 (2006). https://doi.org/10.1007/s10623-006-9004-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-006-9004-y

Keywords

AMS Classification

Navigation