Skip to main content

Advertisement

Log in

Repeated Stimulation of Toll-Like Receptor 2 and Dectin-1 Induces Chronic Pancreatitis in Mice Through the Participation of Acquired Immunity

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Stimulation of Toll-like receptor 3 (TLR3) induces autoimmune-mediated pancreatitis in susceptible mice, whereas stimulation of TLR4 causes nonautoimmune-mediated pancreatitis. However, the effects of TLR2 stimulation on the pancreas are unknown.

Aims

We investigated the role of TLR2 stimulation on pancreatic damage by repeatedly stimulating mice with TLR2 ligands.

Methods

Wild-type (WT) and interleukin 10-deficient (IL-10-knockout (KO)) mice were administered zymosan and lipoteichoic acid (LTA) intraperitoneally at various doses twice weekly for 4 weeks. Syngeneic T-cell-deficient mice, B-cell-deficient mice, recombination activating gene 2-deficient (RAG2–KO) mice and RAG2–KO mice that had been reconstituted with CD4+ or CD8+ T cells isolated from WT mice were treated with zymosan similarly. Mice were killed, the severity of pancreatitis was graded histologically, and serum cytokine levels were measured.

Results

Repeated administration of zymosan induced pancreatitis dose dependently in both WT and IL-10–KO mice. Administration of LTA induced pancreatitis only in IL-10–KO mice. Adoptive transfer of splenocytes obtained from IL-10–KO mice with pancreatitis did not cause pancreatitis in recipient RAG2–KO mice. Pancreatitis was scarcely observed in RAG2–KO mice and was attenuated in T-cell-deficient and B-cell-deficient mice compared with WT mice. A single administration of zymosan significantly increased the serum level of monocyte chemoattractant protein 1 (MCP-1) in WT mice.

Conclusions

Repeated stimulation of TLR2 and dectin-1 induced nonautoimmune-mediated pancreatitis in mice. Participation of acquired immunity seems to play an important role in the pathogenesis of pancreatitis in association with the increase in serum MCP-1 level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lankisch PG, Löhr-Happe A, Otto J, Creutzfeldt W. Natural course in chronic pancreatitis. Pain, exocrine and endocrine pancreatic insufficiency and prognosis of the disease. Digestion. 1993;54:148–155.

  2. Lucrezio L, Bassi M, Migliori M, Bastagli L, Gullo L. Alcoholic pancreatitis: new pathogenetic insights. Minerva Med. 2008;99:391–398.

    CAS  PubMed  Google Scholar 

  3. Yadav D, Whitcomb DC. The role of alcohol and smoking in pancreatitis. Nat Rev Gastroenterol Hepatol. 2010;7:131–145.

    Article  PubMed  Google Scholar 

  4. Yadav D, Timmons L, Benson JT, Dierkhising RA, Chari ST. Incidence, prevalence and survival of chronic pancreatitis: a population-based study. Am J Gastroenterol. 2011;106:2192–2199.

    Article  PubMed  Google Scholar 

  5. Lévy P, Domínguez-Muńoz E, Imrie C, Löhr M, Maisonneuve P. Epidemiology of chronic pancreatitis: burden of the disease and consequences. United European Gastroenterol J. 2014;2:345–354.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dufour MC, Adamson MD. The epidemiology of alcohol-induced pancreatitis. Pancreas. 2003;27:286–290.

    Article  PubMed  Google Scholar 

  7. Li J, Guo M, Hu B, Liu R, Wang R, Tang C. Does chronic ethanol intake cause chronic pancreatitis? Evidence and mechanism. Pancreas. 2008;37:189–195.

    Article  PubMed  CAS  Google Scholar 

  8. Deng X, Wang L, Elm MS et al. Chronic alcohol consumption accelerates fibrosis in response to cerulein-induced pancreatitis in rats. Am J Pathol. 2005;166:93–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bode C, Kugler V, Bode JC. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J Hepatol. 1987;4:8–14.

    Article  CAS  PubMed  Google Scholar 

  10. Bode C, Bode JC. Effect of alcohol consumption on the gut. Best Pract Res Clin Gastroenterol. 2003;17:575–592.

    Article  CAS  PubMed  Google Scholar 

  11. Fortunato F, Gates LK Jr. Alcoholic feeding and lipopolysaccharide injection modulate apoptotic effectors in the rat pancreas in vivo. Pancreas. 2000;21:174–180.

    Article  CAS  PubMed  Google Scholar 

  12. Fortunato F, Deng X, Gates LK et al. Pancreatic response to endotoxin after chronic alcohol exposure: switch from apoptosis to necrosis? Am J Physiol Gastrointest Liver Physiol. 2006;290:G232-241.

    Article  CAS  PubMed  Google Scholar 

  13. Vonlaufen A, Xu Z, Daniel B et al. Bacterial endotoxin: a trigger factor for alcoholic pancreatitis? Evidence from a novel, physiologically relevant animal model. Gastroenterology. 2007;133:1293–1303.

    Article  CAS  PubMed  Google Scholar 

  14. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30:16–34.

    Article  CAS  PubMed  Google Scholar 

  15. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17:1–14.

    Article  CAS  PubMed  Google Scholar 

  16. Klöppel G, Maillet B. Pathology of acute and chronic pancreatitis. Pancreas. 1993;8:659–670.

    Article  PubMed  Google Scholar 

  17. Bhatia R, Thompson C, Ganguly K, Singh S, Batra SK, Kumar S. Alcohol and smoking mediated modulations in adaptive immunity in pancreas. Cells. 2020;9:1880.

    Article  CAS  PubMed Central  Google Scholar 

  18. Qu WM, Miyazaki T, Terada M et al. A novel autoimmune pancreatitis model in MRL mice treated with polyinosinic:polycytidylic acid. Clin Exp Immunol. 2002;129:27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Asada M, Nishio A, Akamatsu T et al. Analysis of humoral immune response in experimental autoimmune pancreatitis in mice. Pancreas. 2010;39:224–231.

    Article  CAS  PubMed  Google Scholar 

  20. Nishio A, Asada M, Uchida K, Fukui T, Chiba T, Okazaki K. The role of innate immunity in the pathogenesis of experimental autoimmune pancreatitis in mice. Pancreas. 2011;40:95–102.

    Article  CAS  PubMed  Google Scholar 

  21. Van Laethem JL, Marchant A, Delvaux A et al. Interleukin 10 prevents necrosis in murine experimental acute pancreatitis. Gastroenterology. 1995;108:1917–1922.

    Article  PubMed  Google Scholar 

  22. Demols A, Van Laethem JC, Quertinmont E et al. Endogenous interleukin-10 modulates fibrosis and regeneration in experimental chronic pancreatitis. Am J Physiol Gastrointestinal Liver Physiol. 2002;282:G1105-1112.

    Article  CAS  Google Scholar 

  23. Fitzpatrick FW, DiCarlo FJ. Zymosan. Ann NY Acad Sci. 1964;118:233–262.

    Google Scholar 

  24. Sato M, Sano H, Iwaki D et al. Direct binding of Toll-like receptor 2 to zymosan and zymosan-induced NF-κB activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. J Immunol. 2003;171:417–425.

    Article  CAS  PubMed  Google Scholar 

  25. Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med. 2003;197:1107–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Genovese T, Di Paola R, Catalano P et al. Treatment with a novel poly(ADP-ribose) glycohydrolase inhibitor reduces development of septic shock-like syndrome induced by zymosan in mice. Crit Care Med. 2004;32:1365–1374.

    Article  CAS  PubMed  Google Scholar 

  27. Malleo G, Mazzon E, Genovese T et al. Absence of endogenous interleukin-10 enhanced organ dysfunction and mortality associated to zymosan-induced multiple organ dysfunction syndrome. Cytokine. 2008;41:136–143.

    Article  CAS  PubMed  Google Scholar 

  28. Kang SS, Sim JR, Yun CH, Han SH. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch Pharm Res. 2016;39:1519–1529.

    Article  CAS  PubMed  Google Scholar 

  29. Nakayama S, Nishio A, Yamashina M et al. Acquired immunity plays an important role in the development of murine experimental pancreatitis induced by alcohol and lipopolysaccharide. Pancreas. 2014;43:28–36.

    Article  CAS  PubMed  Google Scholar 

  30. Yamashina M, Nishio A, Nakayama S et al. Comparative study on experimental autoimmune pancreatitis and its extrapancreatic involvement in mice. Pancreas. 2012;41:1255–1262.

    Article  CAS  PubMed  Google Scholar 

  31. Ammann RW, Muellhaupt B. Progression of alcoholic acute to chronic pancreatitis. Gut. 1994;35:552–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murtaugh LC, Keefe MD. Regeneration and repair of the exocrine pancreas. Annu Rev Physiol. 2015;77:229–249.

    Article  CAS  PubMed  Google Scholar 

  33. Willemer S, Elsӓsser HP, Adler G. Hormone-induced pancreatitis. Eur Surg Res. 1992;24:29–39.

    Article  PubMed  Google Scholar 

  34. Sah RP, Dudeja V, Dawra RK, Saluja AK. Cerulein-induce chronic pancreatitis does not require intra-acinar activation of trypsinogen in mice. Gastroenterology. 2013;144:1076–1085.

    Article  CAS  PubMed  Google Scholar 

  35. Laine VJO, Nyman KM, Peuravuori HJ, Henriksen K, Parvinen M, Nevalainen TJ. Lipopolysaccharide induced apoptosis of rat pancreatic acinar cells. Gut. 1996;38:747–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oh HC, Kwon CI, Haji II et al. Low serum pancreatic amylase and lipase values are simple and useful predictors to diagnose chronic pancreatitis. Gut and Liver. 2017;11:878–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kobayashi T, Kawamura H, Kanda Y et al. Natural killer T cells suppress zymosan A-induced granuloma formation in the liver by modulating interferon-γ and interleukin-10. Immunology. 2012;136:86–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kusske AM, Rongione AJ, Ashley SW, McFadden DW, Reber HA. Interleukin-10 prevents death in lethal necrotizing pancreatitis in mice. Surgery. 1996;120:284–289.

    Article  CAS  PubMed  Google Scholar 

  39. Rongione AJ, Kusske AM, Kwan K, Ashley SW, Reber HA, McFadden DW. Interleukin 10 reduces the severity of acute pancreatitis in rats. Gastroenterology. 1997;112:960–967.

    Article  CAS  PubMed  Google Scholar 

  40. Berg DJ, Kühn R, Rajewsky K et al. Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Invest. 1995;96:2339–2347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roh YS, Seki E. Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. J Gastroenterol Hepatol. 2013;28:38–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aoi K, Nishio A, Okazaki T et al. Inhibition of the dephosphorylation of eukaryotic initiation factor 2α ameliorates murine experimental pancreatitis. Pancreatology. 2019;19:548–556.

    Article  CAS  PubMed  Google Scholar 

  43. Reid DM, Gow NA, Brown GD. Pattern recognition: recent insights from Dectin-1. Curr Opin Immunol. 2009;21:30–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dennehy KM, Ferwerda G, Faro-Trindade I et al. Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol. 2008;38:500–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vallance BA, Hewlett BR, Snider DP, Collins SM. T cell-mediated exocrine pancreatic damage in major histocompatibility complex class II-deficient mice. Gastroenterology. 1998;115:978–987.

    Article  CAS  PubMed  Google Scholar 

  46. Sparmann G, Behrend S, Merkord J et al. Cytokine mRNA levels and lymphocyte infiltration in pancreatic tissue during experimental chronic pancreatitis induced by dibutyltin dichloride. Dig Dis Sci. 2001;46:1647–1656. http://doi.org/10.1023/a:1010689117772

    Article  CAS  PubMed  Google Scholar 

  47. Shrikhande SV, Martignoni ME, Shrikhande M et al. Comparison of histological features and inflammatory cell reaction in alcoholic, idiopathic and tropical chronic pancreatitis. Br J Surg. 2003;90:1565–1572.

    Article  CAS  PubMed  Google Scholar 

  48. Lund FE, Randall TD. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol. 2010;10:236–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qiu Z, Yu P, Bai B et al. Regulatory B10 cells play a protective role in severe acute pancreatitis. Inflamm Res. 2016;65:647–654.

    Article  CAS  PubMed  Google Scholar 

  50. Demols A, Le Moine O, Desalle F, Quertinmont E, Van Laethem JL, Devière J. CD4+ T cells play an important role in acute experimental pancreatitis in mice. Gastroenterology. 2000;118:582–590.

    Article  CAS  PubMed  Google Scholar 

  51. Kido M, Watanabe N, Okazaki T, al. Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells andPD-1-mediating signaling. Gastroenterology. 2008;135:1333–1343.

  52. Oruc N, Whitcomb DC. Theories, mechanisms and models of alcoholic chronic pancreatitis. Gastroenterol Clin North Am. 2004;33:733–750.

    Article  PubMed  Google Scholar 

  53. Grady T, Liang P, Ernst SA, Logsdon CD. Chemokine gene expression in rat pancreatic acinar cells is an early event associated with acute pancreatitis. Gastroenterology. 1997;113:1966–1975.

    Article  CAS  PubMed  Google Scholar 

  54. Masamune A, Kikuta K, Watanabe T, Satoh K, Satoh A, Shimosegawa T. Pancreatic stellate cells express Toll-like receptors. J Gastroentrol. 2008;43:352–362.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-in-Aid for Scientific Research 24591021, 26461038, 15K09053, and 17K09468 from the Japan Society for the Promotion of Science and by a Health and Labor Science Research Grant for Intractable Diseases from the Japanese Ministry of Health, Labor and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyoshi Nishio.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

All procedures performed in this study involving animals were in accordance with the ethical standards of Kansai Medical University at which the study was conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeo, M., Nishio, A., Masuda, M. et al. Repeated Stimulation of Toll-Like Receptor 2 and Dectin-1 Induces Chronic Pancreatitis in Mice Through the Participation of Acquired Immunity. Dig Dis Sci 67, 3783–3796 (2022). https://doi.org/10.1007/s10620-021-07186-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-07186-w

Keywords

Navigation