Skip to main content

Advertisement

Log in

Nonalcoholic Fatty Pancreas Disease: Role in Metabolic Syndrome, “Prediabetes,” Diabetes and Atherosclerosis

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Fat accumulation in the pancreas associated with obesity and the metabolic syndrome (MetS) has been defined as “non-alcoholic fatty pancreas disease” (NAFPD). The aim of this review is to describe the association of NAFPD with obesity, MetS, type 2 diabetes mellitus (T2DM) and atherosclerosis and also increase awareness regarding NAFPD. Various methods are used for the detection and quantification of pancreatic fat accumulation that may play a significant role in the differences that have been observed in the prevalence of NAFPD. Endoscopic ultrasound provides detailed images of the pancreas and its use is expected to increase in the future. Obesity and MetS have been recognized as NAFPD risk factors. NAFPD is strongly associated with non-alcoholic fatty liver disease (NAFLD) and it seems that the presence of both may be related with aggravation of NAFLD. A role of NAFPD in the development of “prediabetes” and T2DM has also been suggested by most human studies. Accumulation of fat in pancreatic tissue possibly initiates a vicious cycle of beta-cell deterioration and further pancreatic fat accumulation. Additionally, some evidence indicates a correlation between NAFPD and atherosclerotic markers (e.g., carotid intima–media thickness). Weight loss and bariatric surgery decreases pancreatic triglyceride content but pharmacologic treatments for NAFPD have not been evaluated in specifically designed studies. Hence, NAFPD is a marker of local fat accumulation possibly associated with beta-cell function impairment, carbohydrate metabolism disorders and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief 2015;219:1–8

    Google Scholar 

  2. Neeland IJ, Ross R, Després J-P, Matsuzawa Y, Yamashita S, Shai I et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol 2019;7:715–725

    PubMed  Google Scholar 

  3. Katsiki N, Athyros VG, Mikhailidis DP. Abnormal peri-organ or intra-organ fat (APIFat) deposition: an underestimated predictor of vascular risk? Curr Vasc Pharmacol 2016;14:432–441

    CAS  PubMed  Google Scholar 

  4. Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2014;2:901–910

    PubMed  Google Scholar 

  5. Smits MM, van Geenen EJM. The clinical significance of pancreatic steatosis. Nat Rev Gastroenterol Hepatol 2011;8:169–177

    PubMed  Google Scholar 

  6. Majumder S, Philip NA, Takahashi N, Levy MJ, Singh VP, Chari ST. Fatty pancreas: Should we be concerned? Pancreas 2017;46:1251–1258

    PubMed  PubMed Central  Google Scholar 

  7. Tariq H, Nayudu S, Akella S, Glandt M, Chilimuri S. Non-alcoholic fatty pancreatic disease: a review of literature. Gastroenterol Res 2016;9:87–91

    CAS  Google Scholar 

  8. Pinte L, Balaban DV, Băicuş C, Jinga M. Non-alcoholic fatty pancreas disease—practices for clinicians. Romanian J Intern Med Rev Roum Med Interne 2019;57:209–219

    Google Scholar 

  9. Alempijevic T, Dragasevic S, Zec S, Popovic D, Milosavljevic T. Non-alcoholic fatty pancreas disease. Postgrad Med J 2017;93:226–230

    PubMed  Google Scholar 

  10. Shah N, Rocha JP, Bhutiani N, Endashaw O. Nonalcoholic fatty pancreas disease. Nutr Clin Pract 2019;34:S49-56

    PubMed  Google Scholar 

  11. Romana BS, Chela H, Dailey FE, Nassir F, Tahan V. Non-alcoholic fatty pancreas disease (NAFPD): a silent spectator or the fifth component of metabolic syndrome? A literature review. Endocr Metab Immune Disord Drug Targets 2018;18:547–554

    CAS  PubMed  Google Scholar 

  12. Zhou J, Li M-L, Zhang D-D, Lin H-Y, Dai X-H, Sun X-L et al. The correlation between pancreatic steatosis and metabolic syndrome in a Chinese population. Pancreatol Off J Int Assoc Pancreatol IAP Al 2016;16:578–583

    Google Scholar 

  13. Lesmana CRA, Pakasi LS, Inggriani S, Aidawati ML, Lesmana LA. Prevalence of Non-Alcoholic Fatty Pancreas Disease (NAFPD) and its risk factors among adult medical check-up patients in a private hospital: a large cross sectional study. BMC Gastroenterol 2015;15:174

    PubMed  PubMed Central  Google Scholar 

  14. Wang C-Y, Ou H-Y, Chen M-F, Chang T-C, Chang C-J. Enigmatic ectopic fat: prevalence of nonalcoholic fatty pancreas disease and its associated factors in a Chinese population. J Am Heart Assoc 2014;3:e000297

    PubMed  PubMed Central  Google Scholar 

  15. Pham YH, Bingham BA, Bell CS, Greenfield SA, John SD, Robinson LH et al. Prevalence of pancreatic steatosis at a pediatric tertiary care center. South Med J 2016;109:196–198

    PubMed  Google Scholar 

  16. Saisho Y, Butler AE, Meier JJ, Monchamp T, Allen-Auerbach M, Rizza RA et al. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat N Y N 2007;20:933–942

    CAS  Google Scholar 

  17. Li J, Xie Y, Yuan F, Song B, Tang C. Noninvasive quantification of pancreatic fat in healthy male population using chemical shift magnetic resonance imaging: effect of aging on pancreatic fat content. Pancreas 2011;40:295–299

    PubMed  Google Scholar 

  18. Singh RG, Yoon HD, Wu LM, Lu J, Plank LD, Petrov MS. Ectopic fat accumulation in the pancreas and its clinical relevance: A systematic review, meta-analysis, and meta-regression. Metabolism 2017;69:1–13

    CAS  PubMed  Google Scholar 

  19. Coe PO, Williams SR, Morris DM, Parkin E, Harvie M, Renehan AG et al. Development of MR quantified pancreatic fat deposition as a cancer risk biomarker. Pancreatol Off J Int Assoc Pancreatol IAP Al 2018;18:429–437

    Google Scholar 

  20. Smereczyński A, Kołaczyk K. Is a fatty pancreas a banal lesion? J Ultrason 2016;16:273–280

    PubMed  PubMed Central  Google Scholar 

  21. Yuan F, Song B, Huang Z, Xia C, Liu X. Quantification of pancreatic fat with dual-echo imaging at 3.0-T MR in clinical application: how do the corrections for T1 and T2* relaxation effect work and simplified correction strategy. Acta Radiol 2018;59:1021–1028

    PubMed  Google Scholar 

  22. Kato S, Iwasaki A, Kurita Y, Arimoto J, Yamamoto T, Hasegawa S et al. Three-dimensional analysis of pancreatic fat by fat-water magnetic resonance imaging provides detailed characterization of pancreatic steatosis with improved reproducibility. PLoS ONE 2019;14:e0224921

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gaborit B, Abdesselam I, Kober F, Jacquier A, Ronsin O, Emungania O et al. Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int J Obest 2015;39:480–487

    CAS  Google Scholar 

  24. Marks WM, Filly RA, Callen PW. Ultrasonic evaluation of normal pancreatic echogenicity and its relationship to fat deposition. Radiology 1980;137:475–479

    CAS  PubMed  Google Scholar 

  25. Sakai NS, Taylor SA, Chouhan MD. Obesity, metabolic disease and the pancreas-quantitative imaging of pancreatic fat. Br J Radiol 2018;91:20180267

    PubMed  PubMed Central  Google Scholar 

  26. Kim SY, Kim H, Cho JY, Lim S, Cha K, Lee KH et al. Quantitative assessment of pancreatic fat by using unenhanced CT: pathologic correlation and clinical implications. Radiology 2014;271:104–112

    PubMed  Google Scholar 

  27. Balthazar EJ. CT contrast enhancement of the pancreas: patterns of enhancement, pitfalls and clinical implications. Pancreatol Off J Int Assoc Pancreatol IAP Al 2011;11:585–587

    Google Scholar 

  28. Idilman IS, Aniktar H, Idilman R, Kabacam G, Savas B, Elhan A et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 2013;267:767–775

    PubMed  Google Scholar 

  29. Idilman IS, Tuzun A, Savas B, Elhan AH, Celik A, Idilman R et al. Quantification of liver, pancreas, kidney, and vertebral body MRI-PDFF in non-alcoholic fatty liver disease. Abdom Imaging 2015;40:1512–1519

    PubMed  Google Scholar 

  30. Hu HH, Kim H-W, Nayak KS, Goran MI. Comparison of fat-water MRI and single-voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans. Obes Silver Spring Md 2010;18:841–847

    Google Scholar 

  31. Kühn J-P, Berthold F, Mayerle J, Völzke H, Reeder SB, Rathmann W et al. Pancreatic steatosis demonstrated at MR imaging in the general population: clinical relevance. Radiology 2015;276:129** – 136

    PubMed  Google Scholar 

  32. Al-Haddad M, Khashab M, Zyromski N, Pungpapong S, Wallace MB, Scolapio J et al. Risk factors for hyperechogenic pancreas on endoscopic ultrasound: a case-control study. Pancreas 2009;38:672–675

    PubMed  Google Scholar 

  33. Sepe PS, Ohri A, Sanaka S, Berzin TM, Sekhon S, Bennett G et al. A prospective evaluation of fatty pancreas by using EUS. Gastrointest Endosc 2011;73:987–993

    PubMed  Google Scholar 

  34. Katsiki N, Perez-Martinez P, Anagnostis P, Mikhailidis DP, Karagiannis A. Is nonalcoholic fatty liver disease indeed the hepatic manifestation of metabolic syndrome? Curr Vasc Pharmacol 2018;16:219–227

    CAS  PubMed  Google Scholar 

  35. Mullish BH, Forlano R, Manousou P, Mikhailidis DP. Non-alcoholic fatty liver disease and cardiovascular risk: an update. Expert Rev Gastroenterol Hepatol 2018;12:1175–1177

    CAS  PubMed  Google Scholar 

  36. Athyros VG, Alexandrides TK, Bilianou H, Cholongitas E, Doumas M, Ganotakis ES et al. The use of statins alone, or in combination with pioglitazone and other drugs, for the treatment of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and related cardiovascular risk. An Expert Panel Statement. Metabolism 2017;71:17–32

    CAS  PubMed  Google Scholar 

  37. Sijens PE, Edens MA, Bakker SJL, Stolk RP. MRI-determined fat content of human liver, pancreas and kidney. World J Gastroenterol 2010;16:1993–1998

    PubMed  PubMed Central  Google Scholar 

  38. Patel NS, Peterson MR, Brenner DA, Heba E, Sirlin C, Loomba R. Association between novel MRI-estimated pancreatic fat and liver histology-determined steatosis and fibrosis in non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2013;37:630–639

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee JS, Kim SH, Jun DW, Han JH, Jang EC, Park JY et al. Clinical implications of fatty pancreas: correlations between fatty pancreas and metabolic syndrome. World J Gastroenterol 2009;15:1869–1875

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang D, Yu X-P, Xiao W-M, Jiao X-P, Wu J, Teng D-L et al. Prevalence and clinical characteristics of fatty pancreas in Yangzhou, China: A cross-sectional study. Pancreatol Off J Int Assoc Pancreatol IAP Al 2018;18:263–268

    CAS  Google Scholar 

  41. Li S, Su L, Lv G, Zhao W, Chen J. Transabdominal ultrasonography of the pancreas is superior to that of the liver for detection of ectopic fat deposits resulting from metabolic syndrome. Medicine (Baltimore) 2017;96:e8060

    Google Scholar 

  42. van Geenen E-JM, Smits MM, Schreuder TCMA, van der Peet DL, Bloemena E, Mulder CJJ. Nonalcoholic fatty liver disease is related to nonalcoholic fatty pancreas disease. Pancreas 2010;39:1185–1190

    PubMed  Google Scholar 

  43. Rosenblatt R, Mehta A, Snell D, Hissong E, Kierans AS, Kumar S. Ultrasonographic nonalcoholic fatty pancreas is associated with advanced fibrosis in NAFLD: a retrospective analysis. Dig Dis Sci 2019;64:262–268. https://doi.org/10.1007/s10620-018-5295-x.

    Article  CAS  PubMed  Google Scholar 

  44. Aune D, Sen A, Prasad M, Norat T, Janszky I, Tonstad S et al. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ 2016;353:i2156

    PubMed  PubMed Central  Google Scholar 

  45. Ryan DH, Kahan S. Guideline recommendations for obesity management. Med Clin North Am 2018;102:49–63

    PubMed  Google Scholar 

  46. Filippatos TD, Kyrou I, Georgousopoulou EN, Chrysohoou C, Kouli G-M, Tsigos C et al. Modeling anthropometric indices in relation to 10-year (2002–2012) incidence of cardiovascular disease, among apparently healthy individuals: the ATTICA study. Diabetes Metab Syndr 2017;11:S789–S795

    PubMed  Google Scholar 

  47. Kotsis V, Tsioufis K, Antza C, Seravalle G, Coca A, Sierra C et al. Obesity and cardiovascular risk: a call for action from the European Society of Hypertension Working Group of Obesity, Diabetes and the High-risk Patient and European Association for the Study of Obesity: part B: obesity-induced cardiovascular disease, early prevention strategies and future research directions. J Hypertens 2018;36:1441–1455

    CAS  PubMed  Google Scholar 

  48. Kotsis V, Jordan J, Micic D, Finer N, Leitner DR, Toplak H et al. Obesity and cardiovascular risk: a call for action from the European Society of Hypertension Working Group of Obesity, Diabetes and the High-risk Patient and European Association for the Study of Obesity: part A: mechanisms of obesity induced hypertension, diabetes and dyslipidemia and practice guidelines for treatment. J Hypertens 2018;36:1427–1440

    CAS  PubMed  Google Scholar 

  49. Katsiki N, Anagnostis P, Kotsa K, Goulis DG, Mikhailidis DP. Obesity, metabolic syndrome and the risk of microvascular complications in patients with diabetes mellitus. Curr Pharm Des 2019;25:2051–2059

    CAS  PubMed  Google Scholar 

  50. Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin 2018;39:1176–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Katsiki N, Mantzoros C, Mikhailidis DP. Adiponectin, lipids and atherosclerosis. Curr Opin Lipidol 2017;28:347–354

    CAS  PubMed  Google Scholar 

  52. Filippatos TD, Liberopoulos E, Georgoula M, Tellis CC, Tselepis AD, Elisaf M. Effects of increased body weight and short-term weight loss on serum PCSK9 levels—a prospective pilot study. Arch Med Sci Atheroscler Dis 2017;2:e46-51

    PubMed  PubMed Central  Google Scholar 

  53. Seifalian AM, Filippatos TD, Joshi J, Mikhailidis DP. Obesity and arterial compliance alterations. Curr Vasc Pharmacol 2010;8:155–168

    CAS  PubMed  Google Scholar 

  54. Milionis HJ, Filippatos TD, Derdemezis CS, Kalantzi KJ, Goudevenos J, Seferiadis K et al. Excess body weight and risk of first-ever acute ischaemic non-embolic stroke in elderly subjects. Eur J Neurol 2007;14:762–769

    CAS  PubMed  Google Scholar 

  55. Pienkowska J, Brzeska B, Kaszubowski M, Kozak O, Jankowska A, Szurowska E. MRI assessment of ectopic fat accumulation in pancreas, liver and skeletal muscle in patients with obesity, overweight and normal BMI in correlation with the presence of central obesity and metabolic syndrome. Diabetes Metab Syndr Obes 2019;12:623–636

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Le KA, Ventura EE, Fisher JQ, Davis JN, Weigensberg MJ, Punyanitya M et al. Ethnic differences in pancreatic fat accumulation and its relationship with other fat depots and inflammatory markers. Diabetes Care 2011;34:485–490

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Choi CW, Kim GH, Kang DH, Kim HW, Kim DU, Heo J et al. Associated factors for a hyperechogenic pancreas on endoscopic ultrasound. World J Gastroenterol 2010;16:4329–4334

    PubMed  PubMed Central  Google Scholar 

  58. Rossi AP, Fantin F, Zamboni GA, Mazzali G, Rinaldi CA, Del Giglio M et al. Predictors of ectopic fat accumulation in liver and pancreas in obese men and women. Obes Silver Spring 2011;19:1747–1754

    CAS  Google Scholar 

  59. Targher G, Rossi AP, Zamboni GA, Fantin F, Antonioli A, Corzato F et al. Pancreatic fat accumulation and its relationship with liver fat content and other fat depots in obese individuals. J Endocrinol Investig 2012;35:748–753

    CAS  Google Scholar 

  60. Makino N, Shirahata N, Honda T, Ando Y, Matsuda A, Ikeda Y et al. Pancreatic hyperechogenicity associated with hypoadiponectinemia and insulin resistance: a Japanese population study. World J Hepatol 2016;8:1452–1458

    PubMed  PubMed Central  Google Scholar 

  61. Moschen AR, Adolph TE, Gerner RR, Wieser V, Tilg H. Lipocalin-2: a master mediator of intestinal and metabolic inflammation. Trends Endocrinol Metab 2017;28:388–397

    CAS  PubMed  Google Scholar 

  62. Singh RG, Nguyen NN, Cervantes A, Kim JU, Stuart CE, Petrov MS. Circulating levels of lipocalin-2 are associated with fatty pancreas but not fatty liver. Peptides 2019;119:170117

    CAS  PubMed  Google Scholar 

  63. Athyros VG, Tziomalos K, Katsiki N, Doumas M, Karagiannis A, Mikhailidis DP. Cardiovascular risk across the histological spectrum and the clinical manifestations of non-alcoholic fatty liver disease: an update. World J Gastroenterol 2015;21:6820–6834

    PubMed  PubMed Central  Google Scholar 

  64. Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: an update. Metabolism 2016;65:1109–1123

    CAS  PubMed  Google Scholar 

  65. Nunez-Duran E, Chanclon B, Sutt S, Real J, Marschall HU, Wernstedt Asterholm I et al. Protein kinase STK25 aggravates the severity of non-alcoholic fatty pancreas disease in mice. J Endocrinol 2017;234:15–27

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Heni M, Machann J, Staiger H, Schwenzer NF, Peter A, Schick F et al. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes Metab Res Rev 2010;26:200–205

    CAS  PubMed  Google Scholar 

  67. Schwenzer NF, Machann J, Martirosian P, Stefan N, Schraml C, Fritsche A et al. Quantification of pancreatic lipomatosis and liver steatosis by MRI: comparison of in/opposed-phase and spectral-spatial excitation techniques. Investig Radiol 2008;43:330–337

    Google Scholar 

  68. Pinnick KE, Collins SC, Londos C, Gauguier D, Clark A, Fielding BA. Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obes Silver Spring 2008;16:522–530

    CAS  Google Scholar 

  69. Szczepaniak LS, Victor RG, Mathur R, Nelson MD, Szczepaniak EW, Tyer N et al. Pancreatic steatosis and its relationship to beta-cell dysfunction in humans: racial and ethnic variations. Diabetes Care 2012;35:2377–2383

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Soeda J, Mouralidarane A, Cordero P, Li J, Nguyen V, Carter R et al. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas. J Physiol Biochem 2016;72:281–291

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Carter R, Mouralidarane A, Soeda J, Ray S, Pombo J, Saraswati R et al. Non-alcoholic fatty pancreas disease pathogenesis: a role for developmental programming and altered circadian rhythms. PLoS ONE 2014;9:e89505

    PubMed  PubMed Central  Google Scholar 

  72. Oben JA, Patel T, Mouralidarane A, Samuelsson AM, Matthews P, Pombo J et al. Maternal obesity programmes offspring development of non-alcoholic fatty pancreas disease. Biochem Biophys Res Commun 2010;394:24–28

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gazi I, Tsimihodimos V, Filippatos T, Bairaktari E, Tselepis AD, Elisaf M. Concentration and relative distribution of low-density lipoprotein subfractions in patients with metabolic syndrome defined according to the National Cholesterol Education Program criteria. Metabolism 2006;55:885–891

    CAS  PubMed  Google Scholar 

  74. Lagos KG, Filippatos TD, Tsimihodimos V, Gazi IF, Rizos C, Tselepis AD et al. Alterations in the high density lipoprotein phenotype and HDL-associated enzymes in subjects with metabolic syndrome. Lipids 2009;44:9–16

    CAS  PubMed  Google Scholar 

  75. Katsiki N, Athyros VG, Karagiannis A, Mikhailidis DP. Characteristics other than the diagnostic criteria associated with metabolic syndrome: an overview. Curr Vasc Pharmacol 2014;12:627–641

    CAS  PubMed  Google Scholar 

  76. Nikolic D, Katsiki N, Montalto G, Isenovic ER, Mikhailidis DP, Rizzo M. Lipoprotein subfractions in metabolic syndrome and obesity: clinical significance and therapeutic approaches. Nutrients 2013;5:928–948

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kostapanos MS, Florentin M, Elisaf MS, Mikhailidis DP. Hemostatic factors and the metabolic syndrome. Curr Vasc Pharmacol 2013;11:880–905

    CAS  PubMed  Google Scholar 

  78. Gluba A, Mikhailidis DP, Lip GY, Hannam S, Rysz J, Banach M. Metabolic syndrome and renal disease. Int J Cardiol 2013;164:141–150

    PubMed  Google Scholar 

  79. Anagnostis P, Katsiki N, Adamidou F, Athyros VG, Karagiannis A, Kita M et al. 11beta-Hydroxysteroid dehydrogenase type 1 inhibitors: novel agents for the treatment of metabolic syndrome and obesity-related disorders? Metabolism 2013;62:21–33

    CAS  PubMed  Google Scholar 

  80. Perez-Martinez P, Mikhailidis DP, Athyros VG, Bullo M, Couture P, Covas MI et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation. Nutr Rev 2017;75:307–326

    PubMed  PubMed Central  Google Scholar 

  81. Laou E, Milionis H, Petrou A, Arnaoutoglou E, Glantzounis G, Bairaktari E et al. The impact of metabolic syndrome and its components on perioperative outcomes after elective laparotomy—a prospective observational study. Am J Surg 2017;214:831–837

    PubMed  Google Scholar 

  82. Athyros VG, Mikhailidis DP. High incidence of metabolic syndrome further increases cardiovascular risk in patients with type 2 diabetes, Implications for everyday practice. J Diabetes Complicat 2016;30:9–11

    Google Scholar 

  83. Tzimas P, Petrou A, Laou E, Milionis H, Mikhailidis DP, Papadopoulos G. Impact of metabolic syndrome in surgical patients: should we bother? Br J Anaesth 2015;115:194–202

    CAS  PubMed  Google Scholar 

  84. Katsiki N, Athyros VG, Mikhailidis DP. Metabolic syndrome: Different definitions and gender-specific associations with cardiovascular risk factors. Diab Vasc Res 2015;12:471–472

    CAS  Google Scholar 

  85. Catanzaro R, Cuffari B, Italia A, Marotta F. Exploring the metabolic syndrome: nonalcoholic fatty pancreas disease. World J Gastroenterol 2016;22:7660–7675

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bi Y, Wang JL, Li ML, Zhou J, Sun XL. The association between pancreas steatosis and metabolic syndrome: a systematic review and meta-analysis. Diabetes Metab Res Rev 2019;35:e3142

    PubMed  Google Scholar 

  87. Singh RG, Yoon HD, Poppitt SD, Plank LD, Petrov MS. Ectopic fat accumulation in the pancreas and its biomarkers: a systematic review and meta-analysis. Diabetes Metab Res Rev. 2017. https://doi.org/10.1002/dmrr.2918.

    Article  PubMed  Google Scholar 

  88. Ballester-Valles C, Flores-Mendez J, Delgado-Moraleda J, Ballesteros Martin-Portugues A, Merino-Torres JF, Fornes-Ferrer V et al. Hepatic and pancreatic fat as imaging biomarkers of metabolic syndrome. Radiologia. 2019. https://doi.org/10.1016/j.rx.2019.05.010.

    Article  PubMed  Google Scholar 

  89. Weng S, Zhou J, Chen X, Sun Y, Mao Z, Chai K. Prevalence and factors associated with nonalcoholic fatty pancreas disease and its severity in China. Medicine (Baltimore) 2018;97:e11293

    Google Scholar 

  90. Cohen M, Syme C, Deforest M, Wells G, Detzler G, Cheng HL et al. Ectopic fat in youth: the contribution of hepatic and pancreatic fat to metabolic disturbances. Obes Silver Spring 2014;22:1280–1286

    CAS  Google Scholar 

  91. Maggio AB, Mueller P, Wacker J, Viallon M, Belli DC, Beghetti M et al. Increased pancreatic fat fraction is present in obese adolescents with metabolic syndrome. J Pediatr Gastroenterol Nutr 2012;54:720–726

    CAS  PubMed  Google Scholar 

  92. Staaf J, Labmayr V, Paulmichl K, Manell H, Cen J, Ciba I et al. Pancreatic fat is associated with metabolic syndrome and visceral fat but not beta-cell function or body mass index in pediatric obesity. Pancreas 2017;46:358–365

    PubMed  Google Scholar 

  93. Elhady M, Elazab A, Bahagat KA, Abdallah NA, Ibrahim GE. Fatty pancreas in relation to insulin resistance and metabolic syndrome in children with obesity. J Pediatr Endocrinol Metab 2019;32:19–26

    CAS  PubMed  Google Scholar 

  94. Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ 2016;355:i5953

    PubMed  PubMed Central  Google Scholar 

  95. Filippatos TD, Panagiotakos DB, Georgousopoulou EN, Pitaraki E, Kouli GM, Chrysohoou C et al. Mediterranean diet and 10-year (2002–2012) incidence of diabetes and cardiovascular disease in participants with prediabetes: the ATTICA study. Rev Diabet Stud 2016;13:226–235

    PubMed  Google Scholar 

  96. Filippatos TD, Rizos EC, Gazi IF, Lagos K, Agouridis D, Mikhailidis DP et al. Differences in metabolic parameters and cardiovascular risk between American Diabetes Association and World Health Organization definition of impaired fasting glucose in European Caucasian subjects: a cross-sectional study. Arch Med Sci 2013;9:788–795

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Filippatos TD, Rizos EC, Tsimihodimos V, Gazi IF, Tselepis AD, Elisaf MS. Small high-density lipoprotein (HDL) subclasses are increased with decreased activity of HDL-associated phospholipase A(2) in subjects with prediabetes. Lipids 2013;48:547–555

    CAS  PubMed  Google Scholar 

  98. Nowotny B, Kahl S, Kluppelholz B, Hoffmann B, Giani G, Livingstone R et al. Circulating triacylglycerols but not pancreatic fat associate with insulin secretion in healthy humans. Metabolism 2018;81:113–125

    CAS  PubMed  Google Scholar 

  99. Hung CS, Tseng PH, Tu CH, Chen CC, Liao WC, Lee YC et al. Increased pancreatic echogenicity with US: relationship to glycemic progression and incident diabetes. Radiology 2018;287:853–863

    PubMed  Google Scholar 

  100. Fatima J, Gupta N, Karoli R, Chandra A, Jagirdaar S, Arora R et al. Association of sonographically assessed visceral and subcutaneous abdominal fat with insulin resistance in prediabetes. J Assoc Physicians India 2019;67:68–70

    PubMed  Google Scholar 

  101. Uygun A, Kadayifci A, Demirci H, Saglam M, Sakin YS, Ozturk K et al. The effect of fatty pancreas on serum glucose parameters in patients with nonalcoholic steatohepatitis. Eur J Intern Med 2015;26:37–41

    CAS  PubMed  Google Scholar 

  102. Pacifico L, Di Martino M, Anania C, Andreoli GM, Bezzi M, Catalano C et al. Pancreatic fat and beta-cell function in overweight/obese children with nonalcoholic fatty liver disease. World J Gastroenterol 2015;21:4688–4695

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhao ZZ, Xin LL, Xia JH, Yang SL, Chen YX, Li K. Long-term high-fat high-sucrose diet promotes enlarged islets and beta-cell damage by oxidative stress in bama minipigs. Pancreas 2015;44:888–895

    CAS  PubMed  Google Scholar 

  104. van Raalte DH, van der Zijl NJ, Diamant M. Pancreatic steatosis in humans: cause or marker of lipotoxicity? Curr Opin Clin Nutr Metab Care 2010;13:478–485

    PubMed  Google Scholar 

  105. Miyake H, Sakagami J, Yasuda H, Sogame Y, Kato R, Suwa K et al. Association of fatty pancreas with pancreatic endocrine and exocrine function. PLoS ONE 2018;13:e0209448

    PubMed  PubMed Central  Google Scholar 

  106. van der Zijl NJ, Goossens GH, Moors CC, van Raalte DH, Muskiet MH, Pouwels PJ et al. Ectopic fat storage in the pancreas, liver, and abdominal fat depots: impact on beta-cell function in individuals with impaired glucose metabolism. J Clin Endocrinol Metab 2011;96:459–467

    PubMed  Google Scholar 

  107. Ozturk K, Dogan T, Celikkanat S, Ozen A, Demirci H, Kurt O et al. The association of fatty pancreas with subclinical atherosclerosis in nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2018;30:411–417

    PubMed  Google Scholar 

  108. Gerst F, Wagner R, Kaiser G, Panse M, Heni M, Machann J et al. Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia 2017;60:2240–2251

    CAS  PubMed  Google Scholar 

  109. Jaghutriz BA, Wagner R, Heni M, Lehmann R, Machann J, Stefan N et al. Metabolomic characteristics of fatty pancreas. Exp Clin Endocrinol Diabetes. 2019. https://doi.org/10.1055/a-0896-8671.

    Article  PubMed  Google Scholar 

  110. Quiclet C, Dittberner N, Gassler A, Stadion M, Gerst F, Helms A et al. Pancreatic adipocytes mediate hypersecretion of insulin in diabetes-susceptible mice. Metabolism 2019;97:9–17

    CAS  PubMed  Google Scholar 

  111. Katsiki N, Dimitriadis G, Mikhailidis DP. Perirenal adiposity and other excessive intra- and peri-organ fat depots: what is the connection? Angiology 2019;70:581–583

    PubMed  Google Scholar 

  112. Katsiki N, Mikhailidis DP. Abnormal peri-organ or intra-organ fat deposition and vascular risk. Angiology 2018;69:841–842

    PubMed  Google Scholar 

  113. Gerst F, Wagner R, Oquendo MB, Siegel-Axel D, Fritsche A, Heni M et al. What role do fat cells play in pancreatic tissue? Mol Metab 2019;25:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yamazaki H, Tauchi S, Kimachi M, Dohke M, Hanawa N, Kodama Y et al. Independent association between prediabetes and future pancreatic fat accumulation: a 5-year Japanese cohort study. J Gastroenterol 2018;53:873–882

    PubMed  Google Scholar 

  115. Wang LCC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: Cardiovascular disease in diabetes mellitus: Atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus—mechanisms, management, and clinical considerations. Circulation 2016;133:2459–2502

    Google Scholar 

  116. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018;14:88–98

    PubMed  Google Scholar 

  117. Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol 2018;17:83

    PubMed  PubMed Central  Google Scholar 

  118. Wang H, Ba Y, Cai RC, Xing Q. Association between diabetes mellitus and the risk for major cardiovascular outcomes and all-cause mortality in women compared with men: a meta-analysis of prospective cohort studies. BMJ Open 2019;9:e024935

    PubMed  PubMed Central  Google Scholar 

  119. Filippatos T, Tsimihodimos V, Pappa E, Elisaf M. Pathophysiology of diabetic dyslipidaemia. Curr Vasc Pharmacol 2017;15:566–575

    CAS  PubMed  Google Scholar 

  120. Filippatos TD, Florentin M, Georgoula M, Elisaf MS. Pharmacological management of diabetic dyslipidemia. Expert Rev Clin Pharmacol 2017;10:187–200

    CAS  PubMed  Google Scholar 

  121. Agouridis AP, Rizos CV, Elisaf MS, Filippatos TD. Does combination therapy with statins and fibrates prevent cardiovascular disease in diabetic patients with atherogenic mixed dyslipidemia? Rev Diabet Stud 2013;10:171–190

    PubMed  PubMed Central  Google Scholar 

  122. Katsiki N, Kotsa K, Athyros VG, Mikhailidis DP. Statin use in patients with diabetes: one drug, multiple benefits. Expert Rev Cardiovasc Ther 2019;17:1–2

    Google Scholar 

  123. Katsiki N, Purrello F, Tsioufis C, Mikhailidis DP. Cardiovascular disease prevention strategies for type 2 diabetes mellitus. Expert Opin Pharmacother 2017;18:1243–1260

    PubMed  Google Scholar 

  124. Zsori G, Illes D, Ivany E, Kosar K, Holzinger G, Tajti M et al. In new-onset diabetes mellitus, metformin reduces fat accumulation in the liver, but not in the pancreas or pericardium. Metab Syndr Relat Disord 2019;17:289–295

    CAS  PubMed  Google Scholar 

  125. Dite P, Blaho M, Bojkova M, Jabandziev P, Kunovsky L. Nonalcoholic fatty pancreas disease: clinical consequences. Dig Dis Basel Switz 2020;38:143–149

    Google Scholar 

  126. Ou HY, Wang CY, Yang YC, Chen MF, Chang CJ. The association between nonalcoholic fatty pancreas disease and diabetes. PLoS ONE 2013;8:e62561

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Yamazaki H, Tsuboya T, Katanuma A, Kodama Y, Tauchi S, Dohke M et al. Lack of independent association between fatty pancreas and incidence of type 2 diabetes: 5-year Japanese cohort study. Diabetes Care 2016;39:1677–1683

    CAS  PubMed  Google Scholar 

  128. Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA. A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr 2010;46:212–223

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ishibashi C, Kozawa J, Hosakawa Y, Yoneda S, Kimura T, Fujita Y et al. Pancreatic fat is related to the longitudinal decrease in the increment of C-peptide in glucagon stimulation test in type 2 diabetes patients. J Diabetes Investig. 2019. https://doi.org/10.1111/jdi.13108.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Yu TY, Wang CY. Impact of non-alcoholic fatty pancreas disease on glucose metabolism. J Diabetes Investig 2017;8:735–747

    PubMed  PubMed Central  Google Scholar 

  131. Harmon JS, Gleason CE, Tanaka Y, Poitout V, Robertson RP. Antecedent hyperglycemia, not hyperlipidemia, is associated with increased islet triacylglycerol content and decreased insulin gene mRNA level in Zucker diabetic fatty rats. Diabetes 2001;50:2481–2486

    CAS  PubMed  Google Scholar 

  132. Poitout V, Amyot J, Semache M, Zarrouki B, Hagman D, Fontes G. Glucolipotoxicity of the pancreatic beta cell. Biochim Biophys Acta 2010;1801:289–298

    CAS  PubMed  Google Scholar 

  133. Lingvay I, Esser V, Legendre JL, Price AL, Wertz KM, Adams-Huet B et al. Noninvasive quantification of pancreatic fat in humans. J Clin Endocrinol Metab 2009;94:4070–4076

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Chai J, Liu P, Jin E, Su T, Zhang J, Shi K et al. MRI chemical shift imaging of the fat content of the pancreas and liver of patients with type 2 diabetes mellitus. Exp Ther Med 2016;11:476–480

    CAS  PubMed  Google Scholar 

  135. Lim S, Bae JH, Chun EJ, Kim H, Kim SY, Kim KM et al. Differences in pancreatic volume, fat content, and fat density measured by multidetector-row computed tomography according to the duration of diabetes. Acta Diabetol 2014;51:739–748

    PubMed  Google Scholar 

  136. Kizilgul M, Wilhelm JJ, Beilman GJ, Chinnakotla S, Dunn TB, Pruett TL et al. Effect of intrapancreatic fat on diabetes outcomes after total pancreatectomy with islet autotransplantation. J Diabetes 2018;10:286–295

    CAS  PubMed  Google Scholar 

  137. Tushuizen ME, Bunck MC, Pouwels PJ, Bontemps S, van Waesberghe JH, Schindhelm RK et al. Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care 2007;30:2916–2921

    CAS  PubMed  Google Scholar 

  138. Wicklow BA, Griffith AT, Dumontet JN, Venugopal N, Ryner LN, McGavock JM. Pancreatic lipid content is not associated with beta cell dysfunction in youth-onset type 2 diabetes. Can J Diabetes 2015;39:398–404

    PubMed  Google Scholar 

  139. Di Ciaula A, Portincasa P. Fat, epigenome and pancreatic diseases. Interplay and common pathways from a toxic and obesogenic environment. Eur J Intern Med 2014;25:865–873

    PubMed  Google Scholar 

  140. Hori M, Takahashi M, Hiraoka N, Yamaji T, Mutoh M, Ishigamori R et al. Association of pancreatic fatty infiltration with pancreatic ductal adenocarcinoma. Clin Transl Gastroenterol 2014;5:e53

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Skilton MR, Celermajer DS, Cosmi E, Crispi F, Gidding SS, Raitakari OT et al. Natural history of atherosclerosis and abdominal aortic intima-media thickness: rationale, evidence, and best practice for detection of atherosclerosis in the young. J Clin Med. 2019. https://doi.org/10.3390/jcm8081201.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Katsiki N, Mikhailidis DP, Wierzbicki AS. Epicardial fat and vascular risk: a narrative review. Curr Opin Cardiol 2013;28:458–463

    PubMed  Google Scholar 

  143. Katsiki N, Mikhailidis DP. Epicardial fat: a novel marker of subclinical atherosclerosis in clinical practice? Anatol J Cardiol 2017;17:64–65

    PubMed  PubMed Central  Google Scholar 

  144. Kul S, Karadeniz A, Dursun I, Sahin S, Faruk Cirakoglu O, Rasit Sayin M et al. Non-alcoholic fatty pancreas disease is associated with increased epicardial adipose tissue and aortic intima-media thickness. Acta Cardiol Sin 2019;35:118–125

    PubMed  PubMed Central  Google Scholar 

  145. Kim MK, Chun HJ, Park JH, Yeo DM, Baek KH, Song KH et al. The association between ectopic fat in the pancreas and subclinical atherosclerosis in type 2 diabetes. Diabetes Res Clin Pract 2014;106:590–596

    PubMed  Google Scholar 

  146. Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 2013;7:e330–e341

    PubMed  Google Scholar 

  147. Ickin Gulen M, Guven Bagla A, Yavuz O, Hismiogullari AA. Histopathological changes in rat pancreas and skeletal muscle associated with high fat diet induced insulin resistance. Biotech Histochem 2015;90:495–505

    CAS  PubMed  Google Scholar 

  148. Kebede M, Favaloro J, Gunton JE, Laybutt DR, Shaw M, Wong N et al. Fructose-1,6-bisphosphatase overexpression in pancreatic beta-cells results in reduced insulin secretion: a new mechanism for fat-induced impairment of beta-cell function. Diabetes 2008;57:1887–1895

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Matheus VA, Monteiro L, Oliveira RB, Maschio DA, Collares-Buzato CB. Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice. Exp Biol Med Maywood 2017;242:1214–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. The Lancet 2018;391:541–551

    Google Scholar 

  151. Taylor R, Al-Mrabeh A, Hollingsworth K, Lean M, Sattar N, Shaw J. Remission of type 2 diabetes with return of insulin secretory function restores normal pancreas morphology.

  152. Honka H, Koffert J, Hannukainen JC, Tuulari JJ, Karlsson HK, Immonen H et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J Clin Endocrinol Metab 2015;100:2015–2023

    CAS  PubMed  Google Scholar 

  153. Hui SCN, Wong SKH, Ai Q, Yeung DKW, Ng EKW, Chu WCW. Observed changes in brown, white, hepatic and pancreatic fat after bariatric surgery: evaluation with MRI. Eur Radiol 2019;29:849–856

    PubMed  Google Scholar 

  154. Heiskanen MA, Motiani KK, Mari A, Saunavaara V, Eskelinen JJ, Virtanen KA et al. Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial. Diabetologia 2018;61:1817–1828

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Dutour A, Abdesselam I, Ancel P, Kober F, Mrad G, Darmon P et al. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes Metab 2016;18:882–891

    CAS  PubMed  Google Scholar 

  156. Filippatos TD, Kiortsis DN, Liberopoulos EN, Georgoula M, Mikhailidis DP, Elisaf MS. Effect of orlistat, micronised fenofibrate and their combination on metabolic parameters in overweight and obese patients with the metabolic syndrome: the FenOrli study. Curr Med Res Opin 2005;21:1997–2006

    CAS  PubMed  Google Scholar 

  157. Filippatos TD, Gazi IF, Liberopoulos EN, Athyros VG, Elisaf MS, Tselepis AD et al. The effect of orlistat and fenofibrate, alone or in combination, on small dense LDL and lipoprotein-associated phospholipase A2 in obese patients with metabolic syndrome. Atherosclerosis 2007;193:428–437

    CAS  PubMed  Google Scholar 

  158. Filippatos TD, Liberopoulos EN, Kostapanos M, Gazi IF, Papavasiliou EC, Kiortsis DN et al. The effects of orlistat and fenofibrate, alone or in combination, on high-density lipoprotein subfractions and pre-beta1-HDL levels in obese patients with metabolic syndrome. Diabetes Obes Metab 2008;10:476–483

    CAS  PubMed  Google Scholar 

  159. Athyros VG, Elisaf MS, Alexandrides T, Achimastos A, Ganotakis E, Bilianou E et al. Long-term impact of multifactorial treatment on new-onset diabetes and related cardiovascular events in metabolic syndrome: a post hoc ATTEMPT analysis. Angiology 2012;63:358–366

    PubMed  Google Scholar 

  160. Athyros VG, Ganotakis E, Kolovou GD, Nicolaou V, Achimastos A, Bilianou E et al. Assessing the treatment effect in metabolic syndrome without perceptible diabetes (ATTEMPT): a prospective-randomized study in middle aged men and women. Curr Vasc Pharmacol 2011;9:647–657

    CAS  PubMed  Google Scholar 

  161. Rask Larsen J, Dima L, Correll CU, Manu P. The pharmacological management of metabolic syndrome. Expert Rev Clin Pharmacol 2018;11:397–410

    CAS  PubMed  Google Scholar 

  162. Yamazaki H, Tauchi S, Wang J, Dohke M, Hanawa N, Kodama Y et al. Longitudinal association of fatty pancreas with the incidence of type-2 diabetes in lean individuals: a 6-year computed tomography-based cohort study. J Gastroenterol 2020;55:712–721

    CAS  PubMed  Google Scholar 

  163. Tirkes T, Jeon CY, Li L, Joon AY, Seltman TA, Sankar M et al. Association of pancreatic steatosis with chronic pancreatitis, obesity, and type 2 diabetes mellitus. Pancreas 2019;48:420–426

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Wong VW, Wong GL, Yeung DK, Abrigo JM, Kong AP, Chan RS et al. Fatty pancreas, insulin resistance, and beta-cell function: a population study using fat-water magnetic resonance imaging. Am J Gastroenterol 2014;109:589–597

    CAS  PubMed  Google Scholar 

  165. Ahbab S, Ünsal A, Ataoğlu HE, Can TS, Kayaş D, Savaş Y. Prediabetes and type 2 diabetes are independent risk factors for computed tomography-estimated nonalcoholic fatty pancreas disease. Clin Sao Paulo Braz 2019;74:e1337

    Google Scholar 

  166. Xie J, Xu L, Pan Y, Li P, Liu Y, Pan Y et al. Nonalcoholic fatty pancreas disease is related independently to the severity of acute pancreatitis. Eur J Gastroenterol Hepatol 2019;31:973–978

    PubMed  Google Scholar 

  167. Tahtacı M, Algın O, Karakan T, Yürekli ÖT, Alışık M, Köseoğlu H et al. Can pancreatic steatosis affect exocrine functions of pancreas? Turk J Gastroenterol Off J Turk Soc Gastroenterol 2018;29:588–594

    Google Scholar 

  168. Desai V, Patel K, Sheth R, Barlass U, Chan Y-M, Sclamberg J et al. Pancreatic fat infiltration is associated with a higher risk of pancreatic ductal adenocarcinoma. Visc Med 2020;36:220–226

    PubMed  PubMed Central  Google Scholar 

  169. Fukuda Y, Yamada D, Eguchi H, Hata T, Iwagami Y, Noda T et al. CT density in the pancreas is a promising imaging predictor for pancreatic ductal adenocarcinoma. Ann Surg Oncol 2017;24:2762–2769

    PubMed  Google Scholar 

  170. Rebours V, Gaujoux S, d’Assignies G, Sauvanet A, Ruszniewski P, Lévy P et al. Obesity and fatty pancreatic infiltration are risk factors for pancreatic precancerous lesions (panin). Clin Cancer Res Off J Am Assoc Cancer Res 2015;21:3522–3528

    CAS  Google Scholar 

  171. Takahashi M, Hori M, Ishigamori R, Mutoh M, Imai T, Nakagama H. Fatty pancreas: a possible risk factor for pancreatic cancer in animals and humans. Cancer Sci 2018;109:3013–3023

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Tomita Y, Azuma K, Nonaka Y, Kamada Y, Tomoeda M, Kishida M et al. Pancreatic fatty degeneration and fibrosis as predisposing factors for the development of pancreatic ductal adenocarcinoma. Pancreas 2014;43:1032–1041

    PubMed  Google Scholar 

  173. Wu WC, Wang CY. Association between non-alcoholic fatty pancreatic disease (NAFPD) and the metabolic syndrome: case-control retrospective study. Cardiovasc Diabetol 2013;12:77

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Della Corte C, Mosca A, Majo F, Lucidi V, Panera N, Giglioni E et al. Nonalcoholic fatty pancreas disease and nonalcoholic fatty liver disease: more than ectopic fat. Clin Endocrinol Oxf 2015;83:656–662

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Filippatos.

Ethics declarations

Conflict of interest

TDF reports lecture honoraria from Boehringer Ingelheim, Mylan, Astra Zeneca, Lilly, Recordati, Bausch Health, Servier and Innovis. KA and VM report no conflicts of interest. DPM has given talks and attended conferences sponsored by Amgen, Novo Nordisk and Libytec.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippatos, T.D., Alexakis, K., Mavrikaki, V. et al. Nonalcoholic Fatty Pancreas Disease: Role in Metabolic Syndrome, “Prediabetes,” Diabetes and Atherosclerosis. Dig Dis Sci 67, 26–41 (2022). https://doi.org/10.1007/s10620-021-06824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-06824-7

Keywords

Navigation