Skip to main content

Advertisement

Log in

Controversial Contribution of Th17/IL-17 Toward the Immune Response in Intestinal Fibrosis

  • INVITED REVIEW
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Intestinal fibrosis is a common outcome of inflammatory bowel diseases (IBDs), becoming clinically apparent in 40% of patients with Crohn’s disease and 5% of those with ulcerative colitis. Effective pharmacological treatments aimed at controlling or reversing fibrosis progression are unavailable. Fibrosis is characterized by an excessive local accumulation of extracellular matrix proteins (mainly collagen), as a result of their increased production by activated myofibroblasts and/or their reduced degradation by specific matrix metalloproteinases. Initiation and progression of fibrosis are modulated by several pro- and anti-fibrogenic molecules. In recent years, the cytokine interleukin-17 (IL-17) has been integrated into the pathogenesis of fibrosis, although its precise contribution to IBD, and especially to its related intestinal fibrosis, remains controversial. Several data suggest both a pro-inflammatory and pro-fibrotic action and a protective function of the Th17/IL-17 immune response. A recent study has demonstrated that the treatment with anti-IL-17 antibody significantly alleviated 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colorectal fibrosis in mice by down-regulating the expression of collagen 3 and several pro-fibrogenic cytokines. Here, we describe and discuss the possible involvement of the Th17/IL-17 immune response in the initiation ad progression of intestinal fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Latella G, Di Gregorio J, Flati V, Rieder F, Lawrance IC. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol. 2015;50:53–65.

    PubMed  CAS  Google Scholar 

  2. Rieder F, Zimmermann EM, Remzi FH, Sandborn WJ. Crohn’s disease complicated by strictures: a systematic review. Gut. 2013;62:1072–1084.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Rieder F, Latella G, Magro F, et al. European Crohn’s and colitis organisation topical review on prediction, diagnosis and management of fibrostenosing Crohn’s disease. J Crohns Colitis. 2016;10:873–885.

    PubMed  Google Scholar 

  4. Rieder F, Fiocchi C, Rogler G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology. 2017;152:e6.

    Google Scholar 

  5. Latella G, Sferra R, Speca S, Vetuschi A, Gaudio E. Can we prevent, reduce or reverse intestinal fibrosis in IBD? Eur Rev Med Pharmacol Sci. 2013;17:1283–1304.

    PubMed  CAS  Google Scholar 

  6. D’Haens G, Rieder F, Feagan BG, et al. IOIBD fibrosis working group. Challenges in the pathophysiology, diagnosis and management of intestinal fibrosis in inflammatory bowel disease. Gastroenterology. 2019. https://doi.org/10.1053/j.gastro.2019.05.072.

    Article  PubMed  Google Scholar 

  7. Latella G, Rogler G, Bamias G, et al. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis. 2014;8:1147–1165.

    PubMed  Google Scholar 

  8. Speca S, Giusti I, Rieder F, Latella G. Cellular and molecular mechanisms of intestinal fibrosis. World J Gastroenterol. 2012;18:3635–3661.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Lawrance IC, Rogler G, Bamias G, et al. Cellular and molecular mediators of intestinal fibrosis. J Crohns Colitis. 2017;11:1491–1503.

    PubMed  Google Scholar 

  10. Ramani K, Biswas PS. Interleukin-17: friend or foe in organ fibrosis. Cytokine. 2019;120:282–288.

    PubMed  CAS  Google Scholar 

  11. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–238.

    PubMed  CAS  Google Scholar 

  12. Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006;203:1685–1691.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature. 2007;448:480–483.

    PubMed  CAS  Google Scholar 

  14. Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441:231–234.

    PubMed  CAS  Google Scholar 

  15. Awasthi A, Riol-Blanco L, Jäger A, et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol. 2009;182:5904–5908.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Hundorfean G, Neurath MF, Mudter J. Functional relevance of T helper 17 (Th17) cells and the IL-17 cytokine family in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:180–186.

    PubMed  Google Scholar 

  17. Lee JS, Cella M, McDonald KG, et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of notch. Nat Immunol. 2011;13:144–151.

    PubMed  PubMed Central  Google Scholar 

  18. Singh NP, Singh UP, Singh B, Price RL, Nagarkatti M, Nagarkatti PS. Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis. PLoS One. 2011;6:e23522.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Liao CM, Zimmer MI, Wang CR. The functions of type I and type II natural killer T cells in inflammatory bowel diseases. Inflamm Bowel Dis. 2013;19:1330–1338.

    PubMed  PubMed Central  Google Scholar 

  20. Yeste A, Mascanfroni ID, Nadeau M, et al. IL-21 induces IL-22 production in CD4 + T cells. Nat Commun. 2014;5:3753.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52:65–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Caruso R, Sarra M, Stolfi C, et al. Interleukin-25 inhibits interleukin-12 production and Th1 cell-driven inflammation in the gut. Gastroenterology. 2009;136:2270–2279.

    PubMed  CAS  Google Scholar 

  23. Shi T, Xie Y, Fu Y, et al. The signaling axis of microRNA-31/interleukin-25 regulates Th1/Th17-mediated inflammation response in colitis. Mucosal Immunol. 2017;10:983–995.

    PubMed  CAS  Google Scholar 

  24. Gurczynski SJ, Moore BB. IL-17 in the lung: the good, the bad, and the ugly. Am J Physiol Lung Cell Mol Physiol. 2018;314:L6–L16.

    PubMed  Google Scholar 

  25. Ruiz de Morales JMG, Puig L, Daudén E, et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: an updated review of the evidence focusing in controversies. Autoimmun Rev. 2020;19:102429.

    PubMed  Google Scholar 

  26. Li J, Liu L, Zhao Q, Chen M. Role of interleukin-17 in pathogenesis of intestinal fibrosis in mice. Dig Dis Sci. (Epub ahead of print) 2019. https://doi.org/10.1007/s10620-019-05969-w.

  27. Zhang HJ, Zhang YN, Zhou H, Guan L, Li Y, Sun MJ. IL-17A promotes initiation and development of intestinal fibrosis through EMT. Dig Dis Sci. 2018;63:2898–2909. https://doi.org/10.1007/s10620-018-5234-x.

    Article  PubMed  CAS  Google Scholar 

  28. Ray S, De Salvo C, Pizarro TT. Central role of IL-17/Th17 immune responses and the gut microbiota in the pathogenesis of intestinal fibrosis. Curr Opin Gastroenterol. 2014;30:531–538.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Ianiro G, Cammarota G, Valerio L, et al. Microscopic colitis. World J Gastroenterol. 2012;18:6206–6215.

    PubMed  PubMed Central  Google Scholar 

  30. Rieder F, Karrasch T, Ben-Horin S, et al. Results of the 2nd scientific workshop of the ECCO (III): basic mechanisms of intestinal healing. J Crohns Colitis. 2012;6:373–385.

    PubMed  Google Scholar 

  31. Burke JP, Mulsow JJ, O’Keane C, Docherty NG, Watson RW, O’Connell PR. Fibrogenesis in Crohn’s disease. Am J Gastroenterol. 2007;102:439–448.

    PubMed  CAS  Google Scholar 

  32. Ogawa A, Andoh A, Araki Y, Bamba T, Fujiyama Y. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol. 2004;110:55–62.

    PubMed  CAS  Google Scholar 

  33. Zhang HJ, Xu B, Wang H, et al. IL-17 is a protection effector against the adherent-invasive Escherichia coli in murine colitis. Mol Immunol. 2018;93:166–172.

    PubMed  CAS  Google Scholar 

  34. Song X, Dai D, He X, et al. Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage. Immunity. 2015;43:488–501.

    PubMed  CAS  Google Scholar 

  35. Yang XO, Chang SH, Park H, et al. Regulation of inflammatory responses by IL-17F. J Exp Med. 2008;205:1063–1075.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis. 2006;12:382–388.

    PubMed  Google Scholar 

  37. O’Connor W, Kamanaka M, Booth CJ, et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol. 2009;10:603–609.

    PubMed  PubMed Central  Google Scholar 

  38. Nishikawa K, Seo N, Torii M, et al. Interleukin-17 induces an atypical M2-like macrophage subpopulation that regulates intestinal inflammation. PLoS One. 2014;9:e108494.

    PubMed  PubMed Central  Google Scholar 

  39. Dige A, Støy S, Rasmussen TK, et al. Increased levels of circulating Th17 cells in quiescent versus active Crohn’s disease. J Crohns Colitis. 2013;7:248–255.

    PubMed  Google Scholar 

  40. Jiang W, Su J, Zhang X, et al. Elevated levels of Th17 cells and Th17-related cytokines are associated with disease activity in patients with inflammatory bowel disease. Inflamm Res. 2014;63:943–950.

    PubMed  CAS  Google Scholar 

  41. Holtta V, Klemetti P, Sipponen T, et al. IL-23/IL-17 immunity as a hallmark of Crohn’s disease. Inflamm Bowel Dis. 2008;14:1175–1184.

    PubMed  Google Scholar 

  42. Honzawa Y, Nakase H, Shiokawa M, et al. Involvement of interleukin-17A-induced expression of heat shock protein 47 in intestinal fibrosis in Crohn’s disease. Gut. 2014;63:1902–1912.

    PubMed  CAS  Google Scholar 

  43. Biancheri P, Pender SL, Ammoscato F, et al. The role of interleukin 17 in Crohn’s disease-associated intestinal fibrosis. Fibrogenesis Tissue Repair. 2013;6:13.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40:955–962.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Hueber W, Sands BE, Lewitzky S, et al. Secukinumab in Crohn’s disease study group. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61:1693–1700.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Targan SR, Feagan B, Vermeire S, et al. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn’s disease. Am J Gastroenterol. 2016;111:1599–1607.

    PubMed  CAS  Google Scholar 

  47. Fries W, Belvedere A, Cappello M, Orlando A, Trifirò G. Inflammatory bowel disease onset during secukinumab treatment: real concern or just an expression of dysregulated immune response? Clin Drug Investig. 2019;39:799–803.

    PubMed  Google Scholar 

  48. Tindemans I, Joosse ME, Samsom JN. Dissecting the heterogeneity in T-cell mediated inflammation in IBD. Cells. 2020;9:110. https://doi.org/10.3390/cells9010110.

    Article  PubMed Central  Google Scholar 

  49. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028–1040.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. Biochim Biophys Acta. 2013;1832:1049–1060.

    PubMed  CAS  Google Scholar 

  51. Gieseck RL 3rd, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol. 2018;18:62–76.

    PubMed  CAS  Google Scholar 

  52. Sziksz E, Pap D, Lippai R, et al. Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediat Inflamm. 2015;2015:764641.

    Google Scholar 

  53. Ueno A, Ghosh A, Hung D, Li J, Jijon H. Th17 plasticity and its changes associated with inflammatory bowel disease. World J Gastroenterol. 2015;21:12283–12295.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Ueno A, Jeffery L, Kobayashi T, Hibi T, Ghosh S, Jijon H. Th17 plasticity and its relevance to inflammatory bowel disease. J Autoimmun. 2018;87:38–49.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study did not receive any extramural financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Latella.

Ethics declarations

Conflict of interest

The author has no conflicts of interest to declare and did not use any outside assistance in preparing the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latella, G., Viscido, A. Controversial Contribution of Th17/IL-17 Toward the Immune Response in Intestinal Fibrosis. Dig Dis Sci 65, 1299–1306 (2020). https://doi.org/10.1007/s10620-020-06161-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06161-1

Keywords

Navigation