Skip to main content

Advertisement

Log in

CDX-2 Expression in Esophageal Biopsies Without Goblet Cell Intestinal Metaplasia May Be Predictive of Barrett’s Esophagus

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

CDX-2 is a nuclear homeobox transcription factor not normally expressed in esophageal and gastric epithelia, reported to highlight intestinal metaplasia (IM) in the esophagus. Pathological absence of goblet cells at initial screening via hematoxylin and eosin (HE) and alcian blue (AB) staining results in patient exclusion from surveillance programs.

Aims

This study aimed to determine whether non-goblet cell IM, as defined by CDX-2 positivity, can be considered to be a precursor to Barrett’s esophagus (BE).

Methods

This study received IRB approval (17,284). Patients with gastroesophageal reflux disease (n = 181) who underwent upper-gastrointestinal endoscopy with biopsies of the distal esophagus to rule out BE using HE/AB staining and CDX-2 immunostaining were followed for 3 years. Initial and follow-up staining results were evaluated for age/sex.

Results

Differences between development of goblet cell IM in CDX-2-negative and CDX-2-positive groups were evaluated. A Kaplan–Meier curve showed that, out of the 134 patients initially positive for CDX-2, 25 (18.7%) had developed goblet cell IM after 2 years and 106 (79.1%) after 3 years. Conversely, of the 47 patients initially negative for CDX-2, 8 (17.9%) developed goblet cell IM after 24 months and only 11 (23.8%) after 40 to 45 months (P = .049; age-adjusted Cox proportional hazard regression model).

Conclusion

In cases that are initially AB negative and CDX-2 positive, CDX-2 was demonstrated to have a potential prognostic utility for early detection of progression to BE. CDX-2 expression is significantly predictive for risk of goblet cell IM development 40 to 45 months after initial biopsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AB:

Alcian blue

BE:

Barrett’s esophagus

EAC:

Esophageal adenocarcinoma

GERD:

Gastroesophageal reflux disease

HE:

Hematoxylin and eosin

IM:

Intestinal metaplasia

TF:

Transcription factor

References

  1. Zhang Y. Epidemiology of esophageal cancer. World J Gastroenterol. 2013;19:5598–5606.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Coleman HG, Xie SH, Lagergren J. The epidemiology of esophageal adenocarcinoma. Gastroenterology. 2018;154:390–405.

    Article  PubMed  Google Scholar 

  3. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  4. Playford RJ. New British Society of Gastroenterology (BSG) guidelines for the diagnosis and management of Barrett’s oesophagus. Gut. 2006;55:442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Younes M, Ertan A, Ergun G, et al. Goblet cell mimickers in esophageal biopsies are not associated with an increased risk for dysplasia. Arch Pathol Lab Med. 2007;131:571–575.

    PubMed  Google Scholar 

  6. Shi XY, Bhagwandeen B, Leong AS. CDX2 and villin are useful markers of intestinal metaplasia in the diagnosis of Barrett esophagus. Am J Clin Pathol. 2008;129:571–577.

    Article  PubMed  Google Scholar 

  7. Zhang X, Westerhoff M, Hart J. Expression of SOX9 and CDX2 in nongoblet columnar-lined esophagus predicts the detection of Barrett’s esophagus during follow-up. Mod Pathol. 2015;28:654–661.

    Article  CAS  PubMed  Google Scholar 

  8. Findlay JM, Middleton MR, Tomlinson I. Genetic biomarkers of Barrett’s esophagus susceptibility and progression to dysplasia and cancer: a systematic review and meta-analysis. Dig Dis Sci. 2016;61:25–38. https://doi.org/10.1007/s10620-015-3884-5.

    Article  CAS  PubMed  Google Scholar 

  9. Varghese S, Lao-Sirieix P, Fitzgerald RC. Identification and clinical implementation of biomarkers for Barrett’s esophagus. Gastroenterology. 2012;142:e432.

    Article  Google Scholar 

  10. Kaz AM, Grady WM, Stachler MD, Bass AJ. Genetic and epigenetic alterations in Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterol Clin N Am. 2015;44:473–489.

    Article  Google Scholar 

  11. Grady WM, Yu M. Molecular evolution of metaplasia to adenocarcinoma in the esophagus. Dig Dis Sci. 2018;63:2059–2069. https://doi.org/10.1007/s10620-018-5090-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naini BV, Souza RF, Odze RD. Barrett’s esophagus: a comprehensive and contemporary review for pathologists. Am J Surg Pathol. 2016;40:e45–e66.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martinez P, Mallo D, Paulson TG, et al. Evolution of Barrett’s esophagus through space and time at single-crypt and whole-biopsy levels. Nat Commun. 2018;9:794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Buas MF, Onstad L, Levine DM, et al. MiRNA-related SNPs and risk of esophageal adenocarcinoma and Barrett’s esophagus: post genome-wide association analysis in the BEACON consortium. PLoS ONE. 2015;10:e0128617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Clark RJ, Craig MP, Agrawal S, Kadakia M. MicroRNA involvement in the onset and progression of Barrett’s esophagus: a systematic review. Oncotarget. 2018;9:8179–8196.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gregson EM, Bornschein J, Fitzgerald RC. Genetic progression of Barrett’s oesophagus to oesophageal adenocarcinoma. Br J Cancer. 2016;115:403–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Drahos J, Schwameis K, Orzolek LD, et al. MicroRNA profiles of Barrett’s esophagus and esophageal adenocarcinoma: differences in glandular non-native epithelium. Cancer Epidemiol Biomark Prev. 2016;25:429–437.

    Article  CAS  Google Scholar 

  18. Bansal A, Hong X, Lee IH, et al. MicroRNA expression can be a promising strategy for the detection of Barrett’s esophagus: a pilot study. Clin Transl Gastroenterol. 2014;5:e65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsui D, Zaidi AH, Martin SA, et al. Primary tumor microRNA signature predicts recurrence and survival in patients with locally advanced esophageal adenocarcinoma. Oncotarget. 2016;7:81281–81291.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mourikis T, Benedetti L, Foxall E, et al. Patient-specific detection of cancer genes reveals recurrently perturbed processes in esophageal adenocarcinoma. bioRxiv. 2018;1:321612.

    Google Scholar 

  21. Aichler M, Walch A. In brief: the (molecular) pathogenesis of Barrett’s oesophagus. J Pathol. 2014;232:383–385.

    Article  PubMed  Google Scholar 

  22. Evans JA, McDonald SA. The complex, clonal, and controversial nature of Barrett’s Esophagus the complex, clonal, and controversial nature of Barrett’s Esophagus. Adv Exp Med Biol. 2016;908:27–40.

    Article  PubMed  Google Scholar 

  23. Biswas S, Quante M, Leedham S, Jansen M. The metaplastic mosaic of Barrett’s oesophagus. Virchows Arch. 2018;472:43–54.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bansal A, Lee IH, Hong X, et al. Discovery and validation of Barrett’s esophagus microRNA transcriptome by next generation sequencing. PLoS ONE. 2013;8:e54240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McDonald SA, Graham TA, Lavery DL, Wright NA, Jansen M. The Barrett’s gland in phenotype space. Cell Mol Gastroenterol Hepatol. 2015;1:41–54.

    Article  PubMed  Google Scholar 

  26. Liu Y, Sethi NS, Hinoue T, et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell. 2018;33:e728.

    Google Scholar 

  27. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541:169–175.

    Article  CAS  Google Scholar 

  28. van Nistelrooij AM, van Marion R, Koppert LB, et al. Molecular clonality analysis of esophageal adenocarcinoma by multiregion sequencing of tumor samples. BMC Res Notes. 2017;10:144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nones K, Waddell N, Wayte N, et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun. 2014;5:5224.

    Article  CAS  PubMed  Google Scholar 

  30. Dulak AM, Schumacher SE, van Lieshout J, et al. Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. Can Res. 2012;72:4383–4393.

    Article  CAS  Google Scholar 

  31. Dulak AM, Stojanov P, Peng S, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45:478–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. James R, Kazenwadel J. Homeobox gene expression in the intestinal epithelium of adult mice. J Biol Chem. 1991;266:3246–3251.

    CAS  PubMed  Google Scholar 

  33. James R, Erler T, Kazenwadel J. Structure of the murine homeobox gene cdx-2. Expression in embryonic and adult intestinal epithelium. J Biol Chem. 1994;269:15229–15237.

    CAS  PubMed  Google Scholar 

  34. Beck F, Erler T, Russell A, James R. Expression of CDX-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Dev Dyn. 1995;204:219–227.

    Article  CAS  PubMed  Google Scholar 

  35. Stringer EJ, Duluc I, Saandi T, et al. CDX2 determines the fate of postnatal intestinal endoderm. Development (Cambridge, England). 2012;139:465–474.

    Article  CAS  Google Scholar 

  36. Huo X, Zhang HY, Zhang XI, et al. Acid and bile salt-induced CDX2 expression differs in esophageal squamous cells from patients with and without Barrett’s esophagus. Gastroenterology. 2010;139:194.e191–203.e191.

    Article  CAS  Google Scholar 

  37. Selves J, Long-Mira E, Mathieu MC, Rochaix P, Ilie M. Immunohistochemistry for diagnosis of metastatic carcinomas of unknown primary site. Cancers. 2018;10:108.

    Article  PubMed Central  CAS  Google Scholar 

  38. Phillips RW, Frierson HF Jr, Moskaluk CA. CDX2 as a marker of epithelial intestinal differentiation in the esophagus. Am J Surg Pathol. 2003;27:1442–1447.

    Article  PubMed  Google Scholar 

  39. Colleypriest BJ, Farrant JM, Slack JM, Tosh D. The role of CDX2 in Barrett’s metaplasia. Biochem Soc Trans. 2010;38:364–369.

    Article  CAS  PubMed  Google Scholar 

  40. Groisman GM, Amar M, Meir A. Expression of the intestinal marker CDX2 in the columnar-lined esophagus with and without intestinal (Barrett’s) metaplasia. Mod Pathol. 2004;17:1282–1288.

    Article  CAS  PubMed  Google Scholar 

  41. Platet N, Hinkel I, Richert L, et al. The tumor suppressor CDX2 opposes pro-metastatic biomechanical modifications of colon cancer cells through organization of the actin cytoskeleton. Cancer Lett. 2017;386:57–64.

    Article  CAS  PubMed  Google Scholar 

  42. Hryniuk A, Grainger S, Savory JG, Lohnes D. CDX1 and CDX2 function as tumor suppressors. J Biol Chem. 2014;289:33343–33354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Witek ME, Nielsen K, Walters R, et al. The putative tumor suppressor CDX2 is overexpressed by human colorectal adenocarcinomas. Clin Cancer Res. 2005;11:8549–8556.

    Article  CAS  PubMed  Google Scholar 

  44. Freund JN, Duluc I, Reimund JM, Gross I, Domon-Dell C. Extending the functions of the homeotic transcription factor CDX2 in the digestive system through nontranscriptional activities. World J Gastroenterol. 2015;21:1436–1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bae JM, Lee TH, Cho NY, Kim TY, Kang GH. Loss of CDX2 expression is associated with poor prognosis in colorectal cancer patients. World J Gastroenterol. 2015;21:1457–1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jun SY, Eom DW, Park H, et al. Prognostic significance of CDX2 and mucin expression in small intestinal adenocarcinoma. Mod Pathol. 2014;27:1364–1374.

    Article  CAS  PubMed  Google Scholar 

  47. Hayes S, Ahmed S, Clark P. Immunohistochemical assessment for CDX2 expression in the Barrett metaplasia-dysplasia-adenocarcinoma sequence. J Clin Pathol. 2011;64:110–113.

    Article  PubMed  Google Scholar 

  48. Barros R, Pereira D, Calle C, et al. Dynamics of SOX2 and CDX2 expression in Barrett’s mucosa. Dis Mark. 2016;2016:1532791.

    Google Scholar 

  49. Johnson DR, Abdelbaqui M, Tahmasbi M, et al. CDX2 protein expression compared to alcian blue staining in the evaluation of esophageal intestinal metaplasia. World J Gastroenterol. 2015;21:2770–2776.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kerkhof M, Bax DA, Moons LM, et al. Does CDX2 expression predict Barrett’s metaplasia in oesophageal columnar epithelium without goblet cells? Aliment Pharmacol Ther. 2006;24:1613–1621.

    Article  CAS  PubMed  Google Scholar 

  51. Streher LA, Campos V, da Silva Mazzini G, et al. CDX2 overexpression in Barrett’s esophagus and esophageal adenocarcinoma. J Cancer Ther. 2014;5:657.

    Article  CAS  Google Scholar 

  52. Saad RS, Ghorab Z, Khalifa MA, Xu M. CDX2 as a marker for intestinal differentiation: its utility and limitations. World J Gastrointest Surg. 2011;3:159–166.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Varghese F, Bukhari AB, Malhotra R, De A. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE. 2014;9:e96801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Aeffner F, Wilson K, Martin NT, et al. The gold standard paradox in digital image analysis: manual versus automated scoring as ground truth. Arch Pathol Lab Med. 2017;141:1267–1275.

    Article  PubMed  Google Scholar 

  55. Bayrak R, Haltas H, Yenidunya S. The value of CDX2 and cytokeratins 7 and 20 expression in differentiating colorectal adenocarcinomas from extraintestinal gastrointestinal adenocarcinomas: cytokeratin 7-/20 + phenotype is more specific than CDX2 antibody. Diagn Pathol. 2012;7:9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Paul Fletcher and Daley Drucker (H. Lee Moffitt Cancer Center and Research Institution) for editorial assistance. They were not compensated for their assistance beyond their regular salaries. This work has been supported in part by the Tissue Core Facility at the H. Lee Moffitt Cancer Center and Research Institute: an NCI-designated Comprehensive Cancer Center (P30-CA076292).

Funding

This work has been supported in part by the Tissue Core Facility at the H. Lee Moffitt Cancer Center and Research Institute: an NCI-designated Comprehensive Cancer Center (P30-CA076292).

Author information

Authors and Affiliations

Authors

Contributions

JS, SAD, KN, RB, and CO collected material used for analyses and reviewed pathology reports and tabulated data; JS, SAD, and RB drafted the manuscript; SAD, KN, CO, and DC reviewed the HE slides and the AB/CDX-2 stains, confirming the pathological diagnoses; DB ran the biostatical analyses; HL, IK, FSC, JK, and AK reviewed the manuscript and provided clinical input and patient data; DC conceptualized the hypothesis and study design and finalized the manuscript.

Corresponding author

Correspondence to Domenico Coppola.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saller, J., Al Diffalha, S., Neill, K. et al. CDX-2 Expression in Esophageal Biopsies Without Goblet Cell Intestinal Metaplasia May Be Predictive of Barrett’s Esophagus. Dig Dis Sci 65, 1992–1998 (2020). https://doi.org/10.1007/s10620-019-05914-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05914-x

Keywords

Navigation