Skip to main content

Advertisement

Log in

Evolving Role of Vitamin D in Immune-Mediated Disease and Its Implications in Autoimmune Hepatitis

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Vitamin D has immunomodulatory, anti-inflammatory, antioxidant, and anti-fibrotic actions that may impact on the occurrence and outcome of immune-mediated disease. The goals of this review are to describe the nature of these expanded roles, examine the implications of vitamin D deficiency in autoimmune hepatitis, and identify opportunities for future investigation. Abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Vitamin D receptors are expressed on the principal cell populations involved in the innate and adaptive immune responses. Macrophages and dendritic cells can produce 1,25-dihydroxyvitamin D within the microenvironment. This active form of vitamin D can inhibit immune cell proliferation, promote an anti-inflammatory cytokine profile, expand regulatory T cells, enhance glucocorticoid actions, increase glutathione production, and inhibit hepatic stellate cells. Vitamin D deficiency has been commonly present in patients with immune-mediated liver and non-liver diseases, and it has been associated with histological severity, advanced hepatic fibrosis, and non-response to conventional glucocorticoid therapy in autoimmune hepatitis. Vitamin D analogues with high potency, low calcemic effects, and independence from hepatic hydroxylation are possible interventions. In conclusion, vitamin D has properties that could ameliorate immune-mediated disease, and vitamin D deficiency has been a common finding in immune-mediated liver and non-liver diseases, including autoimmune hepatitis. Loss of vitamin D-dependent homeostatic mechanisms may promote disease progression. Vitamin D analogues that are independent of hepatic hydroxylation constitute an investigational opportunity to supplement current management of autoimmune hepatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Lemire JM. Immunomodulatory role of 1,25-dihydroxyvitamin D3. J Cell Biochem. 1992;49:26–31.

    Article  CAS  PubMed  Google Scholar 

  2. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–281.

    Article  CAS  PubMed  Google Scholar 

  3. Arnson Y, Amital H, Shoenfeld Y. Vitamin D and autoimmunity: new aetiological and therapeutic considerations. Ann Rheum Dis. 2007;66:1137–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adams JS, Hewison M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat Clin Pract Endocrinol Metab. 2008;4:80–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walker VP, Modlin RL. The vitamin D connection to pediatric infections and immune function. Pediatr Res. 2009;65:106R–113R.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miller J, Gallo RL. Vitamin D and innate immunity. Dermatol Ther. 2010;23:13–22.

    Article  PubMed  Google Scholar 

  7. Kamen DL, Tangpricha V. Vitamin D and molecular actions on the immune system: modulation of innate and autoimmunity. J Mol Med (Berl). 2010;88:441–450.

    Article  CAS  Google Scholar 

  8. Dankers W, Colin EM, van Hamburg JP, Lubberts E. Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential. Front Immunol. 2016;7:697.

    PubMed  Google Scholar 

  9. Zhang Y, Leung DY, Richers BN, et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol. 2012;188:2127–2135.

    Article  CAS  PubMed  Google Scholar 

  10. Seydel S, Beilfuss A, Kahraman A, et al. Vitamin D ameliorates stress ligand expression elicited by free fatty acids in the hepatic stellate cell line LX-2. Turk J Gastroenterol. 2011;22:400–407.

    Article  PubMed  Google Scholar 

  11. Jain SK, Micinski D. Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun. 2013;437:7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alvarez JA, Chowdhury R, Jones DP, et al. Vitamin D status is independently associated with plasma glutathione and cysteine thiol/disulphide redox status in adults. Clin Endocrinol (Oxf). 2014;81:458–466.

    Article  CAS  Google Scholar 

  13. Beyazit Y, Kocak E, Tanoglu A, Kekilli M. Oxidative stress might play a role in low serum vitamin D associated liver fibrosis among patients with autoimmune hepatitis. Dig Dis Sci. 2015;60:1106–1108. https://doi.org/10.1007/s10620-015-3526-y.

    Article  PubMed  Google Scholar 

  14. Abramovitch S, Dahan-Bachar L, Sharvit E, et al. Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. Gut. 2011;60:1728–1737.

    Article  CAS  PubMed  Google Scholar 

  15. Abramovitch S, Sharvit E, Weisman Y, et al. Vitamin D inhibits development of liver fibrosis in an animal model but cannot ameliorate established cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2015;308:G112–G120.

    Article  CAS  PubMed  Google Scholar 

  16. Reiter FP, Hohenester S, Nagel JM, et al. 1,25-(OH)(2)-vitamin D(3) prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4(-/-) model. Biochem Biophys Res Commun. 2015;459:227–233.

    Article  CAS  PubMed  Google Scholar 

  17. Agmon-Levin N, Kopilov R, Selmi C, et al. Vitamin D in primary biliary cirrhosis, a plausible marker of advanced disease. Immunol Res. 2015;61:141–146.

    Article  CAS  PubMed  Google Scholar 

  18. Fisher L, Fisher A. Vitamin D and parathyroid hormone in outpatients with noncholestatic chronic liver disease. Clin Gastroenterol Hepatol. 2007;5:513–520.

    Article  CAS  PubMed  Google Scholar 

  19. Miroliaee A, Nasiri-Toosi M, Khalilzadeh O, et al. Disturbances of parathyroid hormone-vitamin D axis in non-cholestatic chronic liver disease: a cross-sectional study. Hepatol Int. 2010;4:634–640.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Arteh J, Narra S, Nair S. Prevalence of vitamin D deficiency in chronic liver disease. Dig Dis Sci. 2010;55:2624–2628. https://doi.org/10.1007/s10620-009-1069-9.

    Article  CAS  PubMed  Google Scholar 

  21. Stokes CS, Volmer DA, Grunhage F, Lammert F. Vitamin D in chronic liver disease. Liver Int. 2013;33:338–352.

    Article  CAS  PubMed  Google Scholar 

  22. Chen EQ, Shi Y, Tang H. New insight of vitamin D in chronic liver diseases. Hepatobiliary Pancreat Dis Int. 2014;13:580–585.

    Article  CAS  PubMed  Google Scholar 

  23. Efe C, Purnak T, Ozaslan E. Vitamin D levels in patients with chronic hepatitis B. Hepatology. 2014;60:768.

    Article  CAS  PubMed  Google Scholar 

  24. Farnik H, Bojunga J, Berger A, et al. Low vitamin D serum concentration is associated with high levels of hepatitis B virus replication in chronically infected patients. Hepatology. 2013;58:1270–1276.

    Article  CAS  PubMed  Google Scholar 

  25. Iruzubieta P, Teran A, Crespo J, Fabrega E. Vitamin D deficiency in chronic liver disease. World J Hepatol. 2014;6:901–915.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gabr SA, Alghadir AH, Allam AA, et al. Correlation between vitamin D levels and apoptosis in geriatric patients infected with hepatitis C virus genotype 4. Clin Interv Aging. 2016;11:523–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Petta S, Camma C, Scazzone C, et al. Low vitamin D serum level is related to severe fibrosis and low responsiveness to interferon-based therapy in genotype 1 chronic hepatitis C. Hepatology. 2010;51:1158–1167.

    Article  CAS  PubMed  Google Scholar 

  28. Petta S, Grimaudo S, Tripodo C, et al. The hepatic expression of vitamin D receptor is inversely associated with the severity of liver damage in genotype 1 chronic hepatitis C patients. J Clin Endocrinol Metab. 2015;100:193–200.

    Article  CAS  PubMed  Google Scholar 

  29. Dasarathy J, Periyalwar P, Allampati S, et al. Hypovitaminosis D is associated with increased whole body fat mass and greater severity of non-alcoholic fatty liver disease. Liver Int. 2014;34:e118–e127.

    Article  CAS  PubMed  Google Scholar 

  30. Nelson JE, Roth CL, Wilson LA, et al. Vitamin D deficiency is associated with increased risk of non-alcoholic steatohepatitis in adults with non-alcoholic fatty liver disease: possible role for MAPK and NF-kappaB? Am J Gastroenterol. 2016;111:852–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saron ML, Godoy HT, Hessel G. Nutritional status of patients with biliary atresia and autoimmune hepatitis related to serum levels of vitamins A, D and E. Arq Gastroenterol. 2009;46:62–68.

    Article  PubMed  Google Scholar 

  32. Smyk DS, Orfanidou T, Invernizzi P, Bogdanos DP, Lenzi M. Vitamin D in autoimmune liver disease. Clin Res Hepatol Gastroenterol. 2013;37:535–545.

    Article  CAS  PubMed  Google Scholar 

  33. Luong KV, Nguyen LT. The role of vitamin D in autoimmune hepatitis. J Clin Med Res. 2013;5:407–415.

    PubMed  PubMed Central  Google Scholar 

  34. Efe C, Kav T, Aydin C, et al. Low serum vitamin D levels are associated with severe histological features and poor response to therapy in patients with autoimmune hepatitis. Dig Dis Sci. 2014;59:3035–3042. https://doi.org/10.1007/s10620-014-3267-3.

    Article  CAS  PubMed  Google Scholar 

  35. Nieves J, Cosman F, Herbert J, Shen V, Lindsay R. High prevalence of vitamin D deficiency and reduced bone mass in multiple sclerosis. Neurology. 1994;44:1687–1692.

    Article  CAS  PubMed  Google Scholar 

  36. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296:2832–2838.

    Article  CAS  PubMed  Google Scholar 

  37. Pozzilli P, Manfrini S, Crino A, et al. Low levels of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 in patients with newly diagnosed type 1 diabetes. Horm Metab Res. 2005;37:680–683.

    Article  CAS  PubMed  Google Scholar 

  38. Littorin B, Blom P, Scholin A, et al. Lower levels of plasma 25-hydroxyvitamin D among young adults at diagnosis of autoimmune type 1 diabetes compared with control subjects: results from the nationwide Diabetes Incidence Study in Sweden (DISS). Diabetologia. 2006;49:2847–2852.

    Article  CAS  PubMed  Google Scholar 

  39. Bener A, Alsaied A, Al-Ali M, et al. High prevalence of vitamin D deficiency in type 1 diabetes mellitus and healthy children. Acta Diabetol. 2009;46:183–189.

    Article  CAS  PubMed  Google Scholar 

  40. Svoren BM, Volkening LK, Wood JR, Laffel LM. Significant vitamin D deficiency in youth with type 1 diabetes mellitus. J Pediatr. 2009;154:132–134.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Janner M, Ballinari P, Mullis PE, Fluck CE. High prevalence of vitamin D deficiency in children and adolescents with type 1 diabetes. Swiss Med Wkly. 2010;140:w13091.

    PubMed  Google Scholar 

  42. Borkar VV, Devidayal, Verma S, Bhalla AK. Low levels of vitamin D in North Indian children with newly diagnosed type 1 diabetes. Pediatr Diabetes. 2010;11:345–350.

    Article  CAS  PubMed  Google Scholar 

  43. Feng R, Li Y, Li G, et al. Lower serum 25 (OH) D concentrations in type 1 diabetes: a meta-analysis. Diabetes Res Clin Pract. 2015;108:e71–e75.

    Article  CAS  PubMed  Google Scholar 

  44. Bae KN, Nam HK, Rhie YJ, Song DJ, Lee KH. Low levels of 25-hydroxyvitamin D in children and adolescents with type 1 diabetes mellitus: a single center experience. Ann Pediatr Endocrinol Metab. 2018;23:21–27.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Als OS, Riis B, Christiansen C. Serum concentration of vitamin D metabolites in rheumatoid arthritis. Clin Rheumatol. 1987;6:238–243.

    Article  CAS  PubMed  Google Scholar 

  46. Oelzner P, Muller A, Deschner F, et al. Relationship between disease activity and serum levels of vitamin D metabolites and PTH in rheumatoid arthritis. Calcif Tissue Int. 1998;62:193–198.

    Article  CAS  PubMed  Google Scholar 

  47. Kroger H, Penttila IM, Alhava EM. Low serum vitamin D metabolites in women with rheumatoid arthritis. Scand J Rheumatol. 1993;22:172–177.

    Article  CAS  PubMed  Google Scholar 

  48. Aguado P, del Campo MT, Garces MV, et al. Low vitamin D levels in outpatient postmenopausal women from a rheumatology clinic in Madrid, Spain: their relationship with bone mineral density. Osteoporos Int. 2000;11:739–744.

    Article  CAS  PubMed  Google Scholar 

  49. Meena N, Singh Chawla SP, Garg R, Batta A, Kaur S. Assessment of vitamin D in rheumatoid arthritis and its correlation with disease activity. J Nat Sci Biol Med. 2018;9:54–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu Y, Wen H. Impact of vitamin D deficiency on clinical parameters in treatment-naive rheumatoid arthritis patients. Z Rheumatol. 2018. https://doi.org/10.1007/s00393-00018-00426-00395.

    Article  PubMed  Google Scholar 

  51. Jahnsen J, Falch JA, Mowinckel P, Aadland E. Vitamin D status, parathyroid hormone and bone mineral density in patients with inflammatory bowel disease. Scand J Gastroenterol. 2002;37:192–199.

    Article  CAS  PubMed  Google Scholar 

  52. Kosmowska-Miskow A. The role of vitamin D3 in inflammatory bowel diseases. Adv Clin Exp Med. 2014;23:497–504.

    Article  PubMed  Google Scholar 

  53. Kamen DL, Cooper GS, Bouali H, et al. Vitamin D deficiency in systemic lupus erythematosus. Autoimmun Rev. 2006;5:114–117.

    Article  CAS  PubMed  Google Scholar 

  54. Farid E, Jaradat AA, Al-Segai O, Hassan AB. Prevalence of vitamin D deficiency in adult patients with systemic lupus erythematosus in Kingdom of Bahrain. Egypt J Immunol. 2017;24:1–8.

    PubMed  Google Scholar 

  55. Hassanalilou T, Khalili L, Ghavamzadeh S, et al. Role of vitamin D deficiency in systemic lupus erythematosus incidence and aggravation. Auto Immun Highlights. 2017;9:1.

    PubMed  PubMed Central  Google Scholar 

  56. Eloi M, Horvath DV, Ortega JC, et al. 25-Hydroxivitamin D serum concentration, not free and bioavailable vitamin D, is associated with disease activity in systemic lupus erythematosus patients. PLoS ONE. 2017;12:e0170323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bae SC, Lee YH. Association between Vitamin D level and/or deficiency, and systemic lupus erythematosus: a meta-analysis. Cell Mol Biol (Noisy-le-grand). 2018;64:7–13.

    Article  Google Scholar 

  58. Wang J, Lv S, Chen G, et al. Meta-analysis of the association between vitamin D and autoimmune thyroid disease. Nutrients. 2015;7:2485–2498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Konstantakis C, Tselekouni P, Kalafateli M, Triantos C. Vitamin D deficiency in patients with liver cirrhosis. Ann Gastroenterol. 2016;29:297–306.

    PubMed  PubMed Central  Google Scholar 

  60. Finkelmeier F, Kronenberger B, Zeuzem S, Piiper A, Waidmann O. Low 25-hydroxyvitamin D levels are associated with infections and mortality in patients with cirrhosis. PLoS ONE. 2015;10:e0132119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stokes CS, Krawczyk M, Reichel C, Lammert F, Grunhage F. Vitamin D deficiency is associated with mortality in patients with advanced liver cirrhosis. Eur J Clin Invest. 2014;44:176–183.

    Article  CAS  PubMed  Google Scholar 

  62. Plum LA, DeLuca HF. Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov. 2010;9:941–955.

    Article  CAS  PubMed  Google Scholar 

  63. Lemire JM, Archer DC. 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J Clin Invest. 1991;87:1103–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Branisteanu DD, Waer M, Sobis H, et al. Prevention of murine experimental allergic encephalomyelitis: cooperative effects of cyclosporine and 1 alpha, 25-(OH)2D3. J Neuroimmunol. 1995;61:151–160.

    Article  CAS  PubMed  Google Scholar 

  65. Cantorna MT, Hayes CE, DeLuca HF. 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci USA. 1996;93:7861–7864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cantorna MT, Hayes CE, DeLuca HF. 1,25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J Nutr. 1998;128:68–72.

    Article  CAS  PubMed  Google Scholar 

  67. Lemire JM, Ince A, Takashima M. 1,25-Dihydroxyvitamin D3 attenuates the expression of experimental murine lupus of MRL/l mice. Autoimmunity. 1992;12:143–148.

    Article  CAS  PubMed  Google Scholar 

  68. Mathieu C, Laureys J, Sobis H, et al. 1,25-Dihydroxyvitamin D3 prevents insulitis in NOD mice. Diabetes. 1992;41:1491–1495.

    Article  CAS  PubMed  Google Scholar 

  69. Mathieu C, Waer M, Laureys J, Rutgeerts O, Bouillon R. Prevention of autoimmune diabetes in NOD mice by 1,25 dihydroxyvitamin D3. Diabetologia. 1994;37:552–558.

    Article  CAS  PubMed  Google Scholar 

  70. Zella JB, McCary LC, DeLuca HF. Oral administration of 1,25-dihydroxyvitamin D3 completely protects NOD mice from insulin-dependent diabetes mellitus. Arch Biochem Biophys. 2003;417:77–80.

    Article  CAS  PubMed  Google Scholar 

  71. Cantorna MT, Munsick C, Bemiss C, Mahon BD. 1,25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr. 2000;130:2648–2652.

    Article  CAS  PubMed  Google Scholar 

  72. Zhu Y, Mahon BD, Froicu M, Cantorna MT. Calcium and 1 alpha,25-dihydroxyvitamin D3 target the TNF-alpha pathway to suppress experimental inflammatory bowel disease. Eur J Immunol. 2005;35:217–224.

    Article  CAS  PubMed  Google Scholar 

  73. Laverny G, Penna G, Vetrano S, et al. Efficacy of a potent and safe vitamin D receptor agonist for the treatment of inflammatory bowel disease. Immunol Lett. 2010;131:49–58.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang H, Wu H, Liu L, et al. 1,25-dihydroxyvitamin D3 regulates the development of chronic colitis by modulating both T helper (Th)1 and Th17 activation. APMIS. 2015;123:490–501.

    Article  CAS  PubMed  Google Scholar 

  75. Andjelkovic Z, Vojinovic J, Pejnovic N, et al. Disease modifying and immunomodulatory effects of high dose 1 alpha (OH) D3 in rheumatoid arthritis patients. Clin Exp Rheumatol. 1999;17:453–456.

    CAS  PubMed  Google Scholar 

  76. Jorgensen SP, Agnholt J, Glerup H, et al. Clinical trial: vitamin D3 treatment in Crohn’s disease—a randomized double-blind placebo-controlled study. Aliment Pharmacol Ther. 2010;32:377–383.

    Article  CAS  PubMed  Google Scholar 

  77. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005;289:F8–F28.

    Article  CAS  PubMed  Google Scholar 

  78. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80:1689S–1696S.

    Article  CAS  PubMed  Google Scholar 

  79. Holick MF, Frommer JE, McNeill SC, et al. Photometabolism of 7-dehydrocholesterol to previtamin D3 in skin. Biochem Biophys Res Commun. 1977;76:107–114.

    Article  CAS  PubMed  Google Scholar 

  80. Okano T, Yasumura M, Mizuno K, Kobayashi T. Photochemical conversion of 7-dehydrocholesterol into vitamin D3 in rat skins. J Nutr Sci Vitaminol (Tokyo). 1977;23:165–168.

    Article  CAS  Google Scholar 

  81. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci USA. 2004;101:7711–7715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bikle DD, Gee E, Halloran B, et al. Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J Clin Endocrinol Metab. 1986;63:954–959.

    Article  CAS  PubMed  Google Scholar 

  83. Smith LM, Gallagher JC. Dietary vitamin D intake for the elderly population: update on the recommended dietary allowance for vitamin D. Endocrinol Metab Clin North Am. 2017;46:871–884.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Holick MF, Matsuoka LY, Wortsman J. Age, vitamin D, and solar ultraviolet. Lancet. 1989;2:1104–1105.

    Article  CAS  PubMed  Google Scholar 

  85. Holick MF. Sunlight, UV-radiation, vitamin D and skin cancer: how much sunlight do we need? Adv Exp Med Biol. 2008;624:1–15.

    Article  CAS  PubMed  Google Scholar 

  86. Huang CH, Huang YA, Lai YC, Sun CK. Prevalence and predictors of hypovitaminosis D among the elderly in subtropical region. PLoS ONE. 2017;12:e0181063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fraser DR, Kodicek E. Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature. 1970;228:764–766.

    Article  CAS  PubMed  Google Scholar 

  88. Brunette MG, Chan M, Ferriere C, Roberts KD. Site of 1,25(OH)2 vitamin D3 synthesis in the kidney. Nature. 1978;276:287–289.

    Article  CAS  PubMed  Google Scholar 

  89. Panda DK, Miao D, Tremblay ML, et al. Targeted ablation of the 25-hydroxyvitamin D 1alpha-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA. 2001;98:7498–7503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bland R, Walker EA, Hughes SV, Stewart PM, Hewison M. Constitutive expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in a transformed human proximal tubule cell line: evidence for direct regulation of vitamin D metabolism by calcium. Endocrinology. 1999;140:2027–2034.

    Article  CAS  PubMed  Google Scholar 

  91. Dardenne O, Prud’homme J, Arabian A, Glorieux FH, St-Arnaud R. Targeted inactivation of the 25-hydroxyvitamin D(3)-1(alpha)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology. 2001;142:3135–3141.

    Article  CAS  PubMed  Google Scholar 

  92. Jones G, Strugnell SA, DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiol Rev. 1998;78:1193–1231.

    Article  CAS  PubMed  Google Scholar 

  93. Fukumoto S. Physiological regulation and disorders of phosphate metabolism–pivotal role of fibroblast growth factor 23. Intern Med. 2008;47:337–343.

    Article  PubMed  Google Scholar 

  94. Quarles LD. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest. 2008;118:3820–3828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Christakos S, Ajibade DV, Dhawan P, Fechner AJ, Mady LJ. Vitamin D: metabolism. Endocrinol Metab Clin North Am. 2010;39:243–253 (table of contents).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev. 2016;96:365–408.

    Article  CAS  PubMed  Google Scholar 

  97. Sakaki T, Kagawa N, Yamamoto K, Inouye K. Metabolism of vitamin D3 by cytochromes P450. Front Biosci. 2005;10:119–134.

    Article  CAS  PubMed  Google Scholar 

  98. Jones G, Prosser DE, Kaufmann M. Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res. 2014;55:13–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yu OB, Arnold LA. Calcitroic acid—a review. ACS Chem Biol. 2016;11:2665–2672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Barbour GL, Coburn JW, Slatopolsky E, Norman AW, Horst RL. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N Engl J Med. 1981;305:440–443.

    Article  CAS  PubMed  Google Scholar 

  101. Adams JS, Sharma OP, Gacad MA, Singer FR. Metabolism of 25-hydroxyvitamin D3 by cultured pulmonary alveolar macrophages in sarcoidosis. J Clin Invest. 1983;72:1856–1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zehnder D, Bland R, Williams MC, et al. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab. 2001;86:888–894.

    CAS  PubMed  Google Scholar 

  103. Bhalla AK, Amento EP, Clemens TL, Holick MF, Krane SM. Specific high-affinity receptors for 1,25-dihydroxyvitamin D3 in human peripheral blood mononuclear cells: presence in monocytes and induction in T lymphocytes following activation. J Clin Endocrinol Metab. 1983;57:1308–1310.

    Article  CAS  PubMed  Google Scholar 

  104. Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science. 1983;221:1181–1183.

    Article  CAS  PubMed  Google Scholar 

  105. Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys. 2000;374:334–338.

    Article  CAS  PubMed  Google Scholar 

  106. Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179:1634–1647.

    Article  CAS  PubMed  Google Scholar 

  107. Penna G, Amuchastegui S, Giarratana N, et al. 1,25-dihydroxyvitamin D3 selectively modulates tolerogenic properties in myeloid but not plasmacytoid dendritic cells. J Immunol. 2007;178:145–153.

    Article  CAS  PubMed  Google Scholar 

  108. Montano-Loza AJ, Czaja AJ. Cell mediators of autoimmune hepatitis and their therapeutic implications. Dig Dis Sci. 2014;60:1528–1542. https://doi.org/10.1007/s10620-014-3473-z.

    Article  CAS  PubMed  Google Scholar 

  109. Haussler MR, Whitfield GK, Haussler CA, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res. 1998;13:325–349.

    Article  CAS  PubMed  Google Scholar 

  110. Kongsbak M, Levring TB, Geisler C, von Essen MR. The vitamin D receptor and T cell function. Front Immunol. 2013;4:148.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Barragan M, Good M, Kolls JK. Regulation of dendritic cell function by vitamin D. Nutrients. 2015;7:8127–8151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1 Alpha,25-Dihydroxyvitamin D3-binding macromolecules in human B lymphocytes: effects on immunoglobulin production. J Immunol. 1986;136:2734–2740.

    CAS  PubMed  Google Scholar 

  113. Berger U, Wilson P, McClelland RA, et al. Immunocytochemical detection of 1,25-dihydroxyvitamin D receptors in normal human tissues. J Clin Endocrinol Metab. 1988;67:607–613.

    Article  CAS  PubMed  Google Scholar 

  114. Reichel H, Koeffler HP, Norman AW. The role of the vitamin D endocrine system in health and disease. N Engl J Med. 1989;320:980–991.

    Article  CAS  PubMed  Google Scholar 

  115. Yu S, Cantorna MT. The vitamin D receptor is required for iNKT cell development. Proc Natl Acad Sci USA. 2008;105:5207–5212.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yu S, Bruce D, Froicu M, Weaver V, Cantorna MT. Failure of T cell homing, reduced CD4/CD8alphaalpha intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. Proc Natl Acad Sci USA. 2008;105:20834–20839.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bruce D, Cantorna MT. Intrinsic requirement for the vitamin D receptor in the development of CD8alphaalpha-expressing T cells. J Immunol. 2011;186:2819–2825.

    Article  CAS  PubMed  Google Scholar 

  118. Cantorna MT. Why do T cells express the vitamin D receptor? Ann N Y Acad Sci. 2011;1217:77–82.

    Article  CAS  PubMed  Google Scholar 

  119. Singh AK, Wilson MT, Hong S, et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med. 2001;194:1801–1811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Poussier P, Ning T, Banerjee D, Julius M. A unique subset of self-specific intraintestinal T cells maintains gut integrity. J Exp Med. 2002;195:1491–1497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Walker LJ, Marrinan E, Muenchhoff M, et al. CD8alphaalpha expression marks terminally differentiated human CD8+ T cells expanded in chronic viral infection. Front Immunol. 2013;4:223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. von Essen MR, Kongsbak M, Schjerling P, et al. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol. 2010;11:344–349.

    Article  CAS  Google Scholar 

  123. Joseph RW, Bayraktar UD, Kim TK, et al. Vitamin D receptor upregulation in alloreactive human T cells. Hum Immunol. 2012;73:693–698.

    Article  CAS  PubMed  Google Scholar 

  124. Alroy I, Towers TL, Freedman LP. Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Mol Cell Biol. 1995;15:5789–5799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cantrell DA, Smith KA. The interleukin-2 T-cell system: a new cell growth model. Science. 1984;224:1312–1316.

    Article  CAS  PubMed  Google Scholar 

  126. Smith KA. Interleukin-2: inception, impact, and implications. Science. 1988;240:1169–1176.

    Article  CAS  PubMed  Google Scholar 

  127. Czaja AJ. Epigenetic changes and their implications in autoimmune hepatitis. Eur J Clin Invest. 2018;48:e12899.

    Article  CAS  Google Scholar 

  128. Mann DA. Epigenetics in liver disease. Hepatology. 2014;60:1418–1425.

    Article  CAS  PubMed  Google Scholar 

  129. Lemon BD, Freedman LP. Selective effects of ligands on vitamin D3 receptor- and retinoid X receptor-mediated gene activation in vivo. Mol Cell Biol. 1996;16:1006–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Carlberg C. The vitamin D(3) receptor in the context of the nuclear receptor superfamily: the central role of the retinoid X receptor. Endocrine. 1996;4:91–105.

    Article  CAS  PubMed  Google Scholar 

  131. Quack M, Carlberg C. Ligand-triggered stabilization of vitamin D receptor/retinoid X receptor heterodimer conformations on DR4-type response elements. J Mol Biol. 2000;296:743–756.

    Article  CAS  PubMed  Google Scholar 

  132. Pike JW, Meyer MB. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D(3). Endocrinol Metab Clin North Am. 2010;39:255–269 (table of contents).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kim S, Shevde NK, Pike JW. 1,25-dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts. J Bone Miner Res. 2005;20:305–317.

    Article  CAS  PubMed  Google Scholar 

  134. van Etten E, Verlinden L, Giulietti A, et al. The vitamin D receptor gene FokI polymorphism: functional impact on the immune system. Eur J Immunol. 2007;37:395–405.

    Article  CAS  PubMed  Google Scholar 

  135. Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology. 2002;35:126–131.

    Article  CAS  PubMed  Google Scholar 

  136. Fan L, Tu X, Zhu Y, et al. Genetic association of vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. J Gastroenterol Hepatol. 2005;20:249–255.

    Article  CAS  PubMed  Google Scholar 

  137. Croxford AL, Kulig P, Becher B. IL-12-and IL-23 in health and disease. Cytokine Growth Factor Rev. 2014;25:415–421.

    Article  CAS  PubMed  Google Scholar 

  138. Joshi S, Pantalena LC, Liu XK, et al. 1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol. 2011;31:3653–3669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. 2004;75:39–48.

    Article  CAS  PubMed  Google Scholar 

  140. Gennaro R, Zanetti M. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers. 2000;55:31–49.

    Article  CAS  PubMed  Google Scholar 

  141. Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311:1770–1773.

    Article  CAS  PubMed  Google Scholar 

  142. Wang TT, Nestel FP, Bourdeau V, et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173:2909–2912.

    Article  CAS  PubMed  Google Scholar 

  143. Czaja AJ. Transitioning from idiopathic to explainable autoimmune hepatitis. Dig Dis Sci. 2015;60:2881–2900. https://doi.org/10.1007/s10620-015-3708-7.

    Article  CAS  PubMed  Google Scholar 

  144. Czaja AJ. Review article: next-generation transformative advances in the pathogenesis and management of autoimmune hepatitis. Aliment Pharmacol Ther. 2017;46:920–937.

    Article  CAS  PubMed  Google Scholar 

  145. McKenna K, Beignon AS, Bhardwaj N. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol. 2005;79:17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mbongue J, Nicholas D, Firek A, Langridge W. The role of dendritic cells in tissue-specific autoimmunity. J Immunol Res. 2014;2014:857143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Penna G, Adorini L. 1 alpha, 25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol. 2000;164:2405–2411.

    Article  CAS  PubMed  Google Scholar 

  148. Gauzzi MC, Purificato C, Donato K, et al. Suppressive effect of 1alpha,25-dihydroxyvitamin D3 on type I IFN-mediated monocyte differentiation into dendritic cells: impairment of functional activities and chemotaxis. J Immunol. 2005;174:270–276.

    Article  CAS  PubMed  Google Scholar 

  149. van Halteren AG, Tysma OM, van Etten E, Mathieu C, Roep BO. 1alpha,25-dihydroxyvitamin D3 or analogue treated dendritic cells modulate human autoreactive T cells via the selective induction of apoptosis. J Autoimmun. 2004;23:233–239.

    Article  CAS  PubMed  Google Scholar 

  150. D’Ambrosio D, Cippitelli M, Cocciolo MG, et al. Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J Clin Invest. 1998;101:252–262.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Hudspeth K, Pontarini E, Tentorio P, et al. The role of natural killer cells in autoimmune liver disease: a comprehensive review. J Autoimmun. 2013;46:55–65.

    Article  CAS  PubMed  Google Scholar 

  152. Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Goldszmid RS, Caspar P, Rivollier A, et al. NK cell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity. 2012;36:1047–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Moretta A, Sivori S, Vitale M, et al. Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells. J Exp Med. 1995;182:875–884.

    Article  CAS  PubMed  Google Scholar 

  155. Boyton RJ, Altmann DM. Natural killer cells, killer immunoglobulin-like receptors and human leucocyte antigen class I in disease. Clin Exp Immunol. 2007;149:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lee GY, Park CY, Cha KS, et al. Differential effect of dietary vitamin D supplementation on natural killer cell activity in lean and obese mice. J Nutr Biochem. 2018;55:178–184.

    Article  CAS  PubMed  Google Scholar 

  157. Rigby WF, Waugh M, Graziano RF. Regulation of human monocyte HLA-DR and CD4 antigen expression, and antigen presentation by 1,25-dihydroxyvitamin D3. Blood. 1990;76:189–197.

    CAS  PubMed  Google Scholar 

  158. Rigby WF, Noelle RJ, Krause K, Fanger MW. The effects of 1,25-dihydroxyvitamin D3 on human T lymphocyte activation and proliferation: a cell cycle analysis. J Immunol. 1985;135:2279–2286.

    CAS  PubMed  Google Scholar 

  159. Willheim M, Thien R, Schrattbauer K, et al. Regulatory effects of 1alpha,25-dihydroxyvitamin D3 on the cytokine production of human peripheral blood lymphocytes. J Clin Endocrinol Metab. 1999;84:3739–3744.

    CAS  PubMed  Google Scholar 

  160. Cantorna MT, Snyder L, Lin YD, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015;7:3011–3021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Towers TL, Freedman LP. Granulocyte-macrophage colony-stimulating factor gene transcription is directly repressed by the vitamin D3 receptor. Implications for allosteric influences on nuclear receptor structure and function by a DNA element. J Biol Chem. 1998;273:10338–10348.

    Article  CAS  PubMed  Google Scholar 

  162. Towers TL, Staeva TP, Freedman LP. A two-hit mechanism for vitamin D3-mediated transcriptional repression of the granulocyte-macrophage colony-stimulating factor gene: vitamin D receptor competes for DNA binding with NFAT1 and stabilizes c-Jun. Mol Cell Biol. 1999;19:4191–4199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Boonstra A, Barrat FJ, Crain C, et al. 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol. 2001;167:4974–4980.

    Article  CAS  PubMed  Google Scholar 

  164. Bartels LE, Jorgensen SP, Agnholt J, et al. 1,25-dihydroxyvitamin D3 and dexamethasone increase interleukin-10 production in CD4 + T cells from patients with Crohn’s disease. Int Immunopharmacol. 2007;7:1755–1764.

    Article  CAS  PubMed  Google Scholar 

  165. Jeffery LE, Qureshi OS, Gardner D, et al. Vitamin D antagonises the suppressive effect of inflammatory cytokines on CTLA-4 expression and regulatory function. PLoS ONE. 2015;10:e0131539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Liberal R, Grant CR, Longhi MS, Mieli-Vergani G, Vergani D. Regulatory T cells: mechanisms of suppression and impairment in autoimmune liver disease. IUBMB Life. 2015;67:88–97.

    Article  CAS  PubMed  Google Scholar 

  167. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol. 2003;4:330–336.

    Article  CAS  PubMed  Google Scholar 

  168. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–1061.

    Article  CAS  PubMed  Google Scholar 

  169. Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4 + T reg cells. J Exp Med. 2006;203:1701–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Borsellino G, Kleinewietfeld M, Di Mitri D, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225–1232.

    Article  CAS  PubMed  Google Scholar 

  171. Gregori S, Casorati M, Amuchastegui S, et al. Regulatory T cells induced by 1 alpha,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol. 2001;167:1945–1953.

    Article  CAS  PubMed  Google Scholar 

  172. Gregori S, Giarratana N, Smiroldo S, Uskokovic M, Adorini L. A 1alpha,25-dihydroxyvitamin D(3) analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes. 2002;51:1367–1374.

    Article  CAS  PubMed  Google Scholar 

  173. Ferreira GB, Gysemans CA, Demengeot J, et al. 1,25-Dihydroxyvitamin D3 promotes tolerogenic dendritic cells with functional migratory properties in NOD mice. J Immunol. 2014;192:4210–4220.

    Article  CAS  PubMed  Google Scholar 

  174. Penna G, Roncari A, Amuchastegui S, et al. Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+ Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3. Blood. 2005;106:3490–3497.

    Article  CAS  PubMed  Google Scholar 

  175. Sebastiani S, Allavena P, Albanesi C, et al. Chemokine receptor expression and function in CD4+ T lymphocytes with regulatory activity. J Immunol. 2001;166:996–1002.

    Article  CAS  PubMed  Google Scholar 

  176. Fletcher JM, Lonergan R, Costelloe L, et al. CD39+ Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol. 2009;183:7602–7610.

    Article  CAS  PubMed  Google Scholar 

  177. Longhi MS, Ma Y, Bogdanos DP, et al. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol. 2004;41:31–37.

    Article  CAS  PubMed  Google Scholar 

  178. Lemire JM, Adams JS, Sakai R, Jordan SC. 1 alpha,25-dihydroxyvitamin D3 suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J Clin Invest. 1984;74:657–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Iho S, Takahashi T, Kura F, Sugiyama H, Hoshino T. The effect of 1,25-dihydroxyvitamin D3 on in vitro immunoglobulin production in human B cells. J Immunol. 1986;136:4427–4431.

    CAS  PubMed  Google Scholar 

  180. Liossis SN, Sfikakis PP. Rituximab-induced B cell depletion in autoimmune diseases: potential effects on T cells. Clin Immunol. 2008;127:280–285.

    Article  CAS  PubMed  Google Scholar 

  181. Li P, Li C, Zhao X, et al. p27(Kip1) stabilization and G(1) arrest by 1,25-dihydroxyvitamin D(3) in ovarian cancer cells mediated through down-regulation of cyclin E/cyclin-dependent kinase 2 and Skp1-Cullin-F-box protein/Skp2 ubiquitin ligase. J Biol Chem. 2004;279:25260–25267.

    Article  CAS  PubMed  Google Scholar 

  182. Dorner T, Lipsky PE. Correlation of circulating CD27high plasma cells and disease activity in systemic lupus erythematosus. Lupus. 2004;13:283–289.

    Article  CAS  PubMed  Google Scholar 

  183. Lemire JM, Archer DC, Beck L, Spiegelberg HL. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr. 1995;125:1704S–1708S.

    CAS  PubMed  Google Scholar 

  184. Overbergh L, Decallonne B, Waer M, et al. 1alpha,25-dihydroxyvitamin D3 induces an autoantigen-specific T-helper 1/T-helper 2 immune shift in NOD mice immunized with GAD65 (p524-543). Diabetes. 2000;49:1301–1307.

    Article  CAS  PubMed  Google Scholar 

  185. Macian F, Lopez-Rodriguez C, Rao A. Partners in transcription: NFAT and AP-1. Oncogene. 2001;20:2476–2489.

    Article  CAS  PubMed  Google Scholar 

  186. Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol. 2005;5:472–484.

    Article  CAS  PubMed  Google Scholar 

  187. Correale J, Ysrraelit MC, Gaitan MI. Immunomodulatory effects of vitamin D in multiple sclerosis. Brain. 2009;132:1146–1160.

    Article  PubMed  Google Scholar 

  188. Colin EM, Asmawidjaja PS, van Hamburg JP, et al. 1,25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum. 2010;62:132–142.

    Article  CAS  PubMed  Google Scholar 

  189. Stio M, Martinesi M, Bruni S, et al. The vitamin D analogue TX 527 blocks NF-kappaB activation in peripheral blood mononuclear cells of patients with Crohn’s disease. J Steroid Biochem Mol Biol. 2007;103:51–60.

    Article  CAS  PubMed  Google Scholar 

  190. Keyse SM. Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol. 2000;12:186–192.

    Article  CAS  PubMed  Google Scholar 

  191. Owens DM, Keyse SM. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene. 2007;26:3203–3213.

    Article  CAS  PubMed  Google Scholar 

  192. Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22:153–183.

    CAS  PubMed  Google Scholar 

  193. Kracht M, Saklatvala J. Transcriptional and post-transcriptional control of gene expression in inflammation. Cytokine. 2002;20:91–106.

    Article  CAS  PubMed  Google Scholar 

  194. Ryynanen J, Carlberg C. Primary 1,25-dihydroxyvitamin D3 response of the interleukin 8 gene cluster in human monocyte- and macrophage-like cells. PLoS ONE. 2013;8:e78170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Schauber J, Dorschner RA, Coda AB, et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest. 2007;117:803–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yu XP, Bellido T, Manolagas SC. Down-regulation of NF-kappa B protein levels in activated human lymphocytes by 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA. 1995;92:10990–10994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Harant H, Andrew PJ, Reddy GS, Foglar E, Lindley IJ. 1alpha,25-dihydroxyvitamin D3 and a variety of its natural metabolites transcriptionally repress nuclear-factor-kappaB-mediated interleukin-8 gene expression. Eur J Biochem. 1997;250:63–71.

    Article  CAS  PubMed  Google Scholar 

  198. Sadeghi K, Wessner B, Laggner U, et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol. 2006;36:361–370.

    Article  CAS  PubMed  Google Scholar 

  199. Czaja AJ. Review article: chemokines as orchestrators of autoimmune hepatitis and potential therapeutic targets. Aliment Pharmacol Ther. 2014;40:261–279.

    Article  CAS  PubMed  Google Scholar 

  200. Zhang Y, Leung DY, Goleva E. Vitamin D enhances glucocorticoid action in human monocytes: involvement of granulocyte-macrophage colony-stimulating factor and mediator complex subunit 14. J Biol Chem. 2013;288:14544–14553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond). 1998;94:557–572.

    Article  CAS  Google Scholar 

  202. Kassel O, Sancono A, Kratzschmar J, et al. Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J. 2001;20:7108–7116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Tchen CR, Martins JR, Paktiawal N, et al. Glucocorticoid regulation of mouse and human dual specificity phosphatase 1 (DUSP1) genes: unusual cis-acting elements and unexpected evolutionary divergence. J Biol Chem. 2010;285:2642–2652.

    Article  CAS  PubMed  Google Scholar 

  204. Clark AR. MAP kinase phosphatase 1: a novel mediator of biological effects of glucocorticoids? J Endocrinol. 2003;178:5–12.

    Article  CAS  PubMed  Google Scholar 

  205. Clark AR, Lasa M. Crosstalk between glucocorticoids and mitogen-activated protein kinase signalling pathways. Curr Opin Pharmacol. 2003;3:404–411.

    Article  CAS  PubMed  Google Scholar 

  206. De Bosscher K, Vanden Berghe W, Haegeman G. Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: negative interference of activated glucocorticoid receptor with transcription factors. J Neuroimmunol. 2000;109:16–22.

    Article  PubMed  Google Scholar 

  207. Adcock IM, Caramori G. Cross-talk between pro-inflammatory transcription factors and glucocorticoids. Immunol Cell Biol. 2001;79:376–384.

    Article  CAS  PubMed  Google Scholar 

  208. De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev. 2003;24:488–522.

    Article  CAS  PubMed  Google Scholar 

  209. Czaja AJ. Nature and implications of oxidative and nitrosative stresses in autoimmune hepatitis. Dig Dis Sci. 2016;61:2784–2803. https://doi.org/10.1007/s10620-016-4247-6.

    Article  CAS  PubMed  Google Scholar 

  210. Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155:2–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Winterbourn CC, Metodiewa D. The reaction of superoxide with reduced glutathione. Arch Biochem Biophys. 1994;314:284–290.

    Article  CAS  PubMed  Google Scholar 

  212. Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4:278–286.

    Article  CAS  PubMed  Google Scholar 

  213. Sanz-Cameno P, Medina J, Garcia-Buey L, et al. Enhanced intrahepatic inducible nitric oxide synthase expression and nitrotyrosine accumulation in primary biliary cirrhosis and autoimmune hepatitis. J Hepatol. 2002;37:723–729.

    Article  CAS  PubMed  Google Scholar 

  214. Pemberton PW, Aboutwerat A, Smith A, et al. Oxidant stress in type I autoimmune hepatitis: the link between necroinflammation and fibrogenesis? Biochim Biophys Acta. 2004;1689:182–189.

    Article  CAS  PubMed  Google Scholar 

  215. Artaza JN, Sirad F, Ferrini MG, Norris KC. 1,25(OH)2vitamin D3 inhibits cell proliferation by promoting cell cycle arrest without inducing apoptosis and modifies cell morphology of mesenchymal multipotent cells. J Steroid Biochem Mol Biol. 2010;119:73–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ding N, Yu RT, Subramaniam N, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 2013;153:601–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Ramirez AM, Wongtrakool C, Welch T, et al. Vitamin D inhibition of pro-fibrotic effects of transforming growth factor beta1 in lung fibroblasts and epithelial cells. J Steroid Biochem Mol Biol. 2010;118:142–150.

    Article  CAS  PubMed  Google Scholar 

  218. Beilfuss A, Sowa JP, Sydor S, et al. Vitamin D counteracts fibrogenic TGF-beta signalling in human hepatic stellate cells both receptor-dependently and independently. Gut. 2015;64:791–799.

    Article  CAS  PubMed  Google Scholar 

  219. Potter JJ, Liu X, Koteish A, Mezey E. 1,25-dihydroxyvitamin D3 and its nuclear receptor repress human alpha1 (I) collagen expression and type I collagen formation. Liver Int. 2013;33:677–686.

    Article  CAS  PubMed  Google Scholar 

  220. Artaza JN, Norris KC. Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibrotic phenotype in mesenchymal multipotent cells. J Endocrinol. 2009;200:207–221.

    Article  CAS  PubMed  Google Scholar 

  221. Hochrath K, Stokes CS, Geisel J, et al. Vitamin D modulates biliary fibrosis in ABCB4-deficient mice. Hepatol Int. 2014;8:443–452.

    Article  PubMed  Google Scholar 

  222. Malabanan A, Veronikis IE, Holick MF. Redefining vitamin D insufficiency. Lancet. 1998;351:805–806.

    Article  CAS  PubMed  Google Scholar 

  223. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006;84:18–28.

    Article  CAS  PubMed  Google Scholar 

  224. Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr. 2008;87:1080S–1086S.

    Article  CAS  PubMed  Google Scholar 

  225. Czaja AJ. Emerging therapeutic biomarkers of autoimmune hepatitis and their impact on current and future management. Expert Rev Gastroenterol Hepatol. 2018. https://doi.org/10.1080/17474124.2018.1453356.

    Article  PubMed  Google Scholar 

  226. Finkelmeier F, Kronenberger B, Koberle V, et al. Severe 25-hydroxyvitamin D deficiency identifies a poor prognosis in patients with hepatocellular carcinoma—a prospective cohort study. Aliment Pharmacol Ther. 2014;39:1204–1212.

    Article  CAS  PubMed  Google Scholar 

  227. Fernandez E, Fibla J, Betriu A, et al. Association between vitamin D receptor gene polymorphism and relative hypoparathyroidism in patients with chronic renal failure. J Am Soc Nephrol. 1997;8:1546–1552.

    CAS  PubMed  Google Scholar 

  228. Adorini L. Vitamin D receptor polymorphisms in primary biliary cirrhosis: a functional connection? J Hepatol. 2009;50:1071–1073.

    Article  CAS  PubMed  Google Scholar 

  229. Conigrave AD, Mun HC, Delbridge L, et al. l-amino acids regulate parathyroid hormone secretion. J Biol Chem. 2004;279:38151–38159.

    Article  CAS  PubMed  Google Scholar 

  230. Mohr SB, Garland CF, Gorham ED, Garland FC. The association between ultraviolet B irradiance, vitamin D status and incidence rates of type 1 diabetes in 51 regions worldwide. Diabetologia. 2008;51:1391–1398.

    Article  CAS  PubMed  Google Scholar 

  231. Simpson S Jr, Blizzard L, Otahal P, Van der Mei I, Taylor B. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82:1132–1141.

    Article  PubMed  Google Scholar 

  232. Szilagyi A, Leighton H, Burstein B, Xue X. Latitude, sunshine, and human lactase phenotype distributions may contribute to geographic patterns of modern disease: the inflammatory bowel disease model. Clin Epidemiol. 2014;6:183–198.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Torkildsen O, Grytten N, Aarseth J, Myhr KM, Kampman MT. Month of birth as a risk factor for multiple sclerosis: an update. Acta Neurol Scand Suppl. 2012;126:58–62.

    Article  Google Scholar 

  234. Dobson R, Giovannoni G, Ramagopalan S. The month of birth effect in multiple sclerosis: systematic review, meta-analysis and effect of latitude. J Neurol Neurosurg Psychiatry. 2013;84:427–432.

    Article  PubMed  Google Scholar 

  235. Reynolds JD, Case LK, Krementsov DN, et al. Modeling month-season of birth as a risk factor in mouse models of chronic disease: from multiple sclerosis to autoimmune encephalomyelitis. FASEB J. 2017;31:2709–2719.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Mithal A, Wahl DA, Bonjour JP, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int. 2009;20:1807–1820.

    Article  CAS  PubMed  Google Scholar 

  237. Watad A, Azrielant S, Bragazzi NL, et al. Seasonality and autoimmune diseases: the contribution of the four seasons to the mosaic of autoimmunity. J Autoimmun. 2017;82:13–30.

    Article  CAS  PubMed  Google Scholar 

  238. Czaja AJ. Global disparities and their implications in the occurrence and outcome of autoimmune hepatitis. Dig Dis Sci. 2017;62:2277–2292. https://doi.org/10.1007/s10620-017-4675-y.

    Article  PubMed  Google Scholar 

  239. Delgado JS, Vodonos A, Malnick S, et al. Autoimmune hepatitis in southern Israel: a 15-year multicenter study. J Dig Dis. 2013;14:611–618.

    CAS  PubMed  Google Scholar 

  240. Hurlburt KJ, McMahon BJ, Deubner H, et al. Prevalence of autoimmune liver disease in Alaska Natives. Am J Gastroenterol. 2002;97:2402–2407.

    Article  PubMed  Google Scholar 

  241. Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006;81:353–373.

    Article  CAS  PubMed  Google Scholar 

  242. Chapuy MC, Preziosi P, Maamer M, et al. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int. 1997;7:439–443.

    Article  CAS  PubMed  Google Scholar 

  243. Tangpricha V, Pearce EN, Chen TC, Holick MF. Vitamin D insufficiency among free-living healthy young adults. Am J Med. 2002;112:659–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Armas LA, Dowell S, Akhter M, et al. Ultraviolet-B radiation increases serum 25-hydroxyvitamin D levels: the effect of UVB dose and skin color. J Am Acad Dermatol. 2007;57:588–593.

    Article  PubMed  Google Scholar 

  245. Harris SS, Dawson-Hughes B. Seasonal changes in plasma 25-hydroxyvitamin D concentrations of young American black and white women. Am J Clin Nutr. 1998;67:1232–1236.

    Article  CAS  PubMed  Google Scholar 

  246. Brooks SPJ, Greene-Finestone L, Whiting S, et al. An analysis of factors associated with 25-hydroxyvitamin D levels in white and non-white Canadians. J AOAC Int. 2017;100:1345–1354.

    Article  CAS  PubMed  Google Scholar 

  247. Liu X, Baylin A, Levy PD. Vitamin D deficiency and insufficiency among US adults: prevalence, predictors and clinical implications. Br J Nutr. 2018;119:928–936.

    Article  CAS  PubMed  Google Scholar 

  248. Alarcon GS, Friedman AW, Straaton KV, et al. Systemic lupus erythematosus in three ethnic groups: III. A comparison of characteristics early in the natural history of the LUMINA cohort. LUpus in MInority populations: NAture vs. Nurture. Lupus. 1999;8:197–209.

    Article  CAS  PubMed  Google Scholar 

  249. Verma S, Torbenson M, Thuluvath PJ. The impact of ethnicity on the natural history of autoimmune hepatitis. Hepatology. 2007;46:1828–1835.

    Article  PubMed  Google Scholar 

  250. Czaja AJ. Autoimmune hepatitis in diverse ethnic populations and geographical regions. Expert Rev Gastroenterol Hepatol. 2013;7:365–385.

    Article  CAS  PubMed  Google Scholar 

  251. MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76:1536–1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Hill TR, Aspray TJ. The role of vitamin D in maintaining bone health in older people. Ther Adv Musculoskelet Dis. 2017;9:89–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Ireland P, Fordtran JS. Effect of dietary calcium and age on jejunal calcium absorption in humans studied by intestinal perfusion. J Clin Invest. 1973;52:2672–2681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Heaney RP, Recker RR, Stegman MR, Moy AJ. Calcium absorption in women: relationships to calcium intake, estrogen status, and age. J Bone Miner Res. 1989;4:469–475.

    Article  CAS  PubMed  Google Scholar 

  255. Eastell R, Yergey AL, Vieira NE, et al. Interrelationship among vitamin D metabolism, true calcium absorption, parathyroid function, and age in women: evidence of an age-related intestinal resistance to 1,25-dihydroxyvitamin D action. J Bone Miner Res. 1991;6:125–132.

    Article  CAS  PubMed  Google Scholar 

  256. Mathei C, Van Pottelbergh G, Vaes B, et al. No relation between vitamin D status and physical performance in the oldest old: results from the Belfrail study. Age Ageing. 2013;42:186–190.

    Article  PubMed  Google Scholar 

  257. Vallejo MS, Blumel JE, Lavin P, et al. Older women do not have seasonal variations of vitamin D levels: a study from a southern country. Menopause. 2018;25:912–917.

    Article  PubMed  Google Scholar 

  258. Schramm C, Kanzler S, Zum Buschenfelde KH, Galle PR, Lohse AW. Autoimmune hepatitis in the elderly. Am J Gastroenterol. 2001;96:1587–1591.

    Article  CAS  PubMed  Google Scholar 

  259. Al-Chalabi T, Boccato S, Portmann BC, McFarlane IG, Heneghan MA. Autoimmune hepatitis (AIH) in the elderly: a systematic retrospective analysis of a large group of consecutive patients with definite AIH followed at a tertiary referral centre. J Hepatol. 2006;45:575–583.

    Article  PubMed  Google Scholar 

  260. Czaja AJ, Carpenter HA. Distinctive clinical phenotype and treatment outcome of type 1 autoimmune hepatitis in the elderly. Hepatology. 2006;43:532–538.

    Article  PubMed  Google Scholar 

  261. Miyake T, Miyaoka H, Abe M, et al. Clinical characteristics of autoimmune hepatitis in older aged patients. Hepatol Res. 2006;36:139–142.

    Article  PubMed  Google Scholar 

  262. Verslype C, George C, Buchel E, et al. Diagnosis and treatment of autoimmune hepatitis at age 65 and older. Aliment Pharmacol Ther. 2005;21:695–699.

    Article  CAS  PubMed  Google Scholar 

  263. Gronbaek L, Vilstrup H, Jepsen P. Autoimmune hepatitis in Denmark: incidence, prevalence, prognosis, and causes of death. A nationwide registry-based cohort study. J Hepatol. 2014;60:612–617.

    Article  PubMed  Google Scholar 

  264. Ngu JH, Bechly K, Chapman BA, et al. Population-based epidemiology study of autoimmune hepatitis: a disease of older women? J Gastroenterol Hepatol. 2010;25:1681–1686.

    Article  PubMed  Google Scholar 

  265. Liel Y, Ulmer E, Shary J, Hollis BW, Bell NH. Low circulating vitamin D in obesity. Calcif Tissue Int. 1988;43:199–201.

    Article  CAS  PubMed  Google Scholar 

  266. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–693.

    Article  CAS  PubMed  Google Scholar 

  267. Arunabh S, Pollack S, Yeh J, Aloia JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab. 2003;88:157–161.

    Article  CAS  PubMed  Google Scholar 

  268. Konradsen S, Ag H, Lindberg F, Hexeberg S, Jorde R. Serum 1,25-dihydroxy vitamin D is inversely associated with body mass index. Eur J Nutr. 2008;47:87–91.

    Article  CAS  PubMed  Google Scholar 

  269. Walsh JS, Evans AL, Bowles S, et al. Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health. Am J Clin Nutr. 2016;103:1465–1471.

    Article  CAS  PubMed  Google Scholar 

  270. Delle Monache S, Di Fulvio P, Iannetti E, et al. Body mass index represents a good predictor of vitamin D status in women independently from age. Clin Nutr. 2018. https://doi.org/10.1016/j.clnu.2018.02.024.

    Article  PubMed  Google Scholar 

  271. Tabesh M, Callegari ET, Gorelik A, et al. Associations between 25-hydroxyvitamin D levels, body composition and metabolic profiles in young women. Eur J Clin Nutr. 2018;72:1093–1102.

    Article  CAS  PubMed  Google Scholar 

  272. Drincic A, Fuller E, Heaney RP, Armas LA. 25-Hydroxyvitamin D response to graded vitamin D(3) supplementation among obese adults. J Clin Endocrinol Metab. 2013;98:4845–4851.

    Article  CAS  PubMed  Google Scholar 

  273. Gallagher JC, Yalamanchili V, Smith LM. The effect of vitamin D supplementation on serum 25(OH)D in thin and obese women. J Steroid Biochem Mol Biol. 2013;136:195–200.

    Article  CAS  PubMed  Google Scholar 

  274. Saarnio E, Pekkinen M, Itkonen ST, et al. Low free 25-hydroxyvitamin D and high vitamin D binding protein and parathyroid hormone in obese Caucasians. A complex association with bone? PLoS ONE. 2018;13:e0192596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Drincic AT, Armas LA, Van Diest EE, Heaney RP. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring). 2012;20:1444–1448.

    Article  CAS  Google Scholar 

  276. Karlsson T, Osmancevic A, Jansson N, et al. Increased vitamin D-binding protein and decreased free 25(OH)D in obese women of reproductive age. Eur J Nutr. 2014;53:259–267.

    Article  CAS  PubMed  Google Scholar 

  277. Uusi-Rasi K, Laaksonen M, Mikkila V, et al. Overweight in childhood and bone density and size in adulthood. Osteoporos Int. 2012;23:1453–1461.

    Article  CAS  PubMed  Google Scholar 

  278. Johansson H, Kanis JA, Oden A, et al. A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res. 2014;29:223–233.

    Article  PubMed  Google Scholar 

  279. Mahmood SF, Idiculla J, Joshi R, Joshi S, Kulkarni S. Vitamin D supplementation in adults with vitamin D deficiency and its effect on metabolic syndrome—a randomized controlled study. Int J Vitam Nutr Res. 2018;86:121–126.

    Article  CAS  Google Scholar 

  280. Cefalo CMA, Conte C, Sorice GP, et al. Effect of vitamin D supplementation on obesity-induced insulin resistance: a double-blind, randomized, placebo-controlled trial. Obesity (Silver Spring). 2018;26:651–657.

    Article  CAS  Google Scholar 

  281. Seong JM, Yoon YS, Lee KS, et al. Gender difference in relationship between serum ferritin and 25-hydroxyvitamin D in Korean adults. PLoS ONE. 2017;12:e0177722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Nashold FE, Spach KM, Spanier JA, Hayes CE. Estrogen controls vitamin D3-mediated resistance to experimental autoimmune encephalomyelitis by controlling vitamin D3 metabolism and receptor expression. J Immunol. 2009;183:3672–3681.

    Article  CAS  PubMed  Google Scholar 

  283. Kragt J, van Amerongen B, Killestein J, et al. Higher levels of 25-hydroxyvitamin D are associated with a lower incidence of multiple sclerosis only in women. Mult Scler. 2009;15:9–15.

    Article  CAS  PubMed  Google Scholar 

  284. Spach KM, Hayes CE. Vitamin D3 confers protection from autoimmune encephalomyelitis only in female mice. J Immunol. 2005;175:4119–4126.

    Article  CAS  PubMed  Google Scholar 

  285. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5:463–466.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Ikeda U, Wakita D, Ohkuri T, et al. 1alpha,25-Dihydroxyvitamin D3 and all-trans retinoic acid synergistically inhibit the differentiation and expansion of Th17 cells. Immunol Lett. 2010;134:7–16.

    Article  CAS  PubMed  Google Scholar 

  287. Ferreira GB, Kleijwegt FS, Waelkens E, et al. Differential protein pathways in 1,25-dihydroxyvitamin d(3) and dexamethasone modulated tolerogenic human dendritic cells. J Proteome Res. 2012;11:941–971.

    Article  CAS  PubMed  Google Scholar 

  288. Dawson-Hughes B, Heaney RP, Holick MF, et al. Estimates of optimal vitamin D status. Osteoporos Int. 2005;16:713–716.

    Article  CAS  PubMed  Google Scholar 

  289. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  290. Bouillon R, Verstuyf A, Verlinden L, Eelen G, Mathieu C. Prospects for vitamin D receptor modulators as candidate drugs for cancer and (auto)immune diseases. Recent Results Cancer Res. 2003;164:353–356.

    Article  CAS  PubMed  Google Scholar 

  291. Leyssens C, Verlinden L, Verstuyf A. The future of vitamin D analogs. Front Physiol. 2014;5:122.

    Article  PubMed  PubMed Central  Google Scholar 

  292. Brown AJ, Coyne DW. Vitamin D analogs: new therapeutic agents for secondary hyperparathyroidism. Treat Endocrinol. 2002;1:313–327.

    Article  CAS  PubMed  Google Scholar 

  293. Eelen G, Verlinden L, Rochel N, et al. Superagonistic action of 14-epi-analogs of 1,25-dihydroxyvitamin D explained by vitamin D receptor-coactivator interaction. Mol Pharmacol. 2005;67:1566–1573.

    Article  CAS  PubMed  Google Scholar 

  294. Ferreira GB, Overbergh L, Verstuyf A, Mathieu C. 1alpha,25-Dihydroxyvitamin D3 and its analogs as modulators of human dendritic cells: a comparison dose-titration study. J Steroid Biochem Mol Biol. 2013;136:160–165.

    Article  CAS  PubMed  Google Scholar 

  295. Verlinden L, Verstuyf A, Van Camp M, et al. Two novel 14-Epi-analogues of 1,25-dihydroxyvitamin D3 inhibit the growth of human breast cancer cells in vitro and in vivo. Cancer Res. 2000;60:2673–2679.

    CAS  PubMed  Google Scholar 

  296. Tanaka Y, DeLuca HF, Kobayashi Y, Ikekawa N. 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3: a highly potent, long-lasting analog of 1,25-dihydroxyvitamin D3. Arch Biochem Biophys. 1984;229:348–354.

    Article  CAS  PubMed  Google Scholar 

  297. Ito H, Ogata H, Yamamoto M, et al. Comparison of oral falecalcitriol and intravenous calcitriol in hemodialysis patients with secondary hyperparathyroidism: a randomized, crossover trial. Clin Nephrol. 2009;71:660–668.

    Article  CAS  PubMed  Google Scholar 

  298. Okamoto S, Ejima E, Kiriyama T, et al. Mechanism of action of newly developed vitamin D analogue. Contrib Nephrol. 1991;91:146–148.

    Article  CAS  PubMed  Google Scholar 

  299. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3:133–146.

    Article  CAS  PubMed  Google Scholar 

  300. Wang KS, Frank DA, Ritz J. Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4. Blood. 2000;95:3183–3190.

    CAS  PubMed  Google Scholar 

  301. Bhat M, Ismail A. Vitamin D treatment protects against and reverses oxidative stress induced muscle proteolysis. J Steroid Biochem Mol Biol. 2015;152:171–179.

    Article  CAS  PubMed  Google Scholar 

  302. Seif AA, Abdelwahed DM. Vitamin D ameliorates hepatic ischemic/reperfusion injury in rats. J Physiol Biochem. 2014;70:659–666.

    Article  CAS  PubMed  Google Scholar 

  303. Gren A. Effects of vitamin E, C and D supplementation on inflammation and oxidative stress in streptozotocin-induced diabetic mice. Int J Vitam Nutr Res. 2013;83:168–175.

    Article  CAS  PubMed  Google Scholar 

  304. Quesada-Gomez JM, Bouillon R. Is calcifediol better than cholecalciferol for vitamin D supplementation? Osteoporos Int. 2018;29:1697–1711.

    Article  CAS  PubMed  Google Scholar 

  305. Cavalli L, Cavalli T, Marcucci G, et al. Biological effects of various regimes of 25-hydroxyvitamin D3 (calcidiol) administration on bone mineral metabolism in postmenopausal women. Clin Cases Miner Bone Metab. 2009;6:169–173.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Albert J. Czaja, MD researched, designed, and wrote this article. The tables and figure are original, constructed by Dr. Czaja, and developed solely for this review. Aldo J. Montano-Loza, MD, PhD encouraged, edited, and revised the article. The review article is original, current, and comprehensive, and it has not been published previously.

Corresponding author

Correspondence to Albert J. Czaja.

Ethics declarations

Conflict of interest

This review did not receive financial support from a funding agency or institution, and Albert J. Czaja, MD and Aldo J. Montano-Loza, MD, PhD have no conflict of interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czaja, A.J., Montano-Loza, A.J. Evolving Role of Vitamin D in Immune-Mediated Disease and Its Implications in Autoimmune Hepatitis. Dig Dis Sci 64, 324–344 (2019). https://doi.org/10.1007/s10620-018-5351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-5351-6

Keywords

Navigation