Skip to main content

Advertisement

Log in

Fecal Microbiota in Patients with Irritable Bowel Syndrome Compared with Healthy Controls Using Real-Time Polymerase Chain Reaction: An Evidence of Dysbiosis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Dysbiosis may play a role in irritable bowel syndrome (IBS), hitherto an enigmatic disorder. We evaluated selected fecal microbes in IBS patients and healthy controls (HC).

Methods

Fecal 16S rRNA copy number of selected bacteria was studied using qPCR in 47 patients with IBS (Rome III) and 30 HC.

Results

Of 47 patients, 20 had constipation (IBS-C), 20 diarrhea (IBS-D), and seven unclassified IBS (IBS-U). Relative difference in 16S rRNA copy number of Bifidobacterium (P = 0.042) was lower, while those of Ruminococcus productus-Clostridium coccoides (P = 0.016), Veillonella (P = 0.008), Bacteroides thetaiotamicron (P < 0.001), Pseudomonas aeruginosa (P < 0.001), and Gram-negative bacteria (GNB, P = 0.001) were higher among IBS patients than HC. Number of Lactobacillus (P = 0.002) was lower, while that of Bacteroides thetaiotamicron (P < 0.001) and segmented filamentous bacteria (SFB, P < 0.001) was higher among IBS-D than IBS-C. Numbers of Bacteroides thetaiotamicron (P < 0.001), P. aeruginosa (P < 0.001), and GNB (P < 0.01) were higher among IBS-C and IBS-D than HC. Quantity of SFB was higher among IBS-D (P = 0.011) and lower among IBS-C (P = 0.002) than HC. Number of Veillonella species was higher among IBS-C than HC (P = 0.002). P. aeruginosa was frequently detected among IBS than HC (46/47 [97.9 %] vs. 10/30 [33.3 %], P < 0.001). Abdominal distension (n = 34/47) was associated with higher number of Bacteroides thetaiotamicron, Clostridium coccoides, P. aeruginosa, SFB, and GNB; bloating (n = 22/47) was associated with Clostridium coccoides and GNB. Microbial flora was different among IBS than HC on principal component analysis.

Conclusion

Fecal microbiota was different among IBS than HC, and different sub-types were associated with different microbiota. P. aeruginosa was more frequent and higher in number among IBS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology. 2006;130:1480–1491.

    Article  PubMed  Google Scholar 

  2. Malinen E, Krogius-Kurikka L, Lyra A, et al. Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome. World J Gastroenterol. 2010;16:4532–4540.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Parkes GC, Brostoff J, Whelan K, Sanderson JD. Gastrointestinal microbiota in irritable bowel syndrome: their role in its pathogenesis and treatment. Am J Gastroenterol. 2008;103:1557–1567.

    Article  PubMed  Google Scholar 

  4. Ohman L, Simren M. New insights into the pathogenesis and pathophysiology of irritable bowel syndrome. Dig Liver Dis. 2007;39:201–215.

    Article  CAS  PubMed  Google Scholar 

  5. Pimentel M, Lembo A, Chey WD, et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med. 2011;364:22–32.

    Article  CAS  PubMed  Google Scholar 

  6. Guandalini S, Magazzu G, Chiaro A, et al. Vsl#3 improves symptoms in children with irritable bowel syndrome: a multicenter, randomized, placebo-controlled, double-blind, crossover study. J Pediatr Gastroenterol Nutr. 2010;51:24–30.

    Article  PubMed  Google Scholar 

  7. Silk DB, Davis A, Vulevic J, Tzortzis G, Gibson GR. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther. 2009;29:508–518.

    Article  CAS  PubMed  Google Scholar 

  8. Malinen E, Rinttila T, Kajander K, et al. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time pcr. Am J Gastroenterol. 2005;100:373–382.

    Article  CAS  PubMed  Google Scholar 

  9. Lee BJ, Bak YT. Irritable bowel syndrome, gut microbiota and probiotics. J Neurogastroenterol Motil. 2011;17:252–266.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kerckhoffs AP, Ben-Amor K, Samsom M, et al. Molecular analysis of faecal and duodenal samples reveals significantly higher prevalence and numbers of pseudomonas aeruginosa in irritable bowel syndrome. J Med Microbiol. 2011;60:236–245.

    Article  PubMed  Google Scholar 

  11. Sung J, Morales W, Kim G, et al. Effect of repeated campylobacter jejuni infection on gut flora and mucosal defense in a rat model of post infectious functional and microbial bowel changes. Neurogastroenterol Motil. 2013;25:529–537.

    Article  CAS  PubMed  Google Scholar 

  12. Balsari A, Ceccarelli A, Dubini F, Fesce E, Poli G. The fecal microbial population in the irritable bowel syndrome. Microbiologica. 1982;5:185–194.

    CAS  PubMed  Google Scholar 

  13. Liebregts T, Adam B, Bredack C, et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology. 2007;132:913–920.

    Article  CAS  PubMed  Google Scholar 

  14. Barbara G, Cremon C, Carini G, et al. The immune system in irritable bowel syndrome. J Neurogastroenterol Motil. 2011;17:349–359.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Loh G, Blaut M. Role of commensal gut bacteria in inflammatory bowel diseases. Gut Microbes. 2012;3:544–555.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Bellavia M, Damiano G, Gioviale MC, et al. Abnormal expansion of segmented filamentous bacteria in the gut: a role in pathogenesis of chronic inflammatory intestinal diseases? Rev Med Microbiol. 2011;22:45–47.

    Article  Google Scholar 

  17. Hattori T, Fukudo S. Use of Rome III criteria for diagnosing irritable bowel syndrome. Nihon Rinsho. 2006;64:1425–1428.

    PubMed  Google Scholar 

  18. Ghoshal UC, Gwee KA, Chen M, et al. Development, translation and validation of enhanced asian rome iii questionnaires for diagnosis of functional bowel diseases in major asian languages: a Rome foundation-asian neurogastroenterology and motility association working team report. J Neurogastroenterol Motil. 2015;21:83–92.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Bartosch S, Fite A, Macfarlane GT, McMurdo ME. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time pcr and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol. 2004;70:3575–3581.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Carroll IM, Chang YH, Park J, Sartor RB, Ringel Y. Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog. 2010;2:19.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Matsuki T, Watanabe K, Tanaka R, Fukuda M, Oyaizu H. Distribution of bifidobacterial species in human intestinal microflora examined with 16s rRNA-gene-targeted species-specific primers. Appl Environ Microbiol. 1999;65:4506–4512.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Ponnusamy K, Choi JN, Kim J, Lee SY, Lee CH. Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J Med Microbiol. 2011;60:817–827.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Qin X, Emerson J, Stapp J, Stapp L, Abe P, Burns JL. Use of real-time PCR with multiple targets to identify pseudomonas aeruginosa and other nonfermenting gram-negative bacilli from patients with cystic fibrosis. J Clin Microbiol. 2003;41:4312–4317.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kubota H, Tsuji H, Matsuda K, Kurakawa T, Asahara T, Nomoto K. Detection of human intestinal catalase-negative, gram-positive cocci by rrna-targeted reverse transcription-PCR. Appl Environ Microbiol. 2010;76:5440–5451.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Conte MP, Schippa S, Zamboni I, et al. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut. 2006;55:1760–1767.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Klausegger A, Hell M, Berger A, et al. Gram type-specific broad-range pcr amplification for rapid detection of 62 pathogenic bacteria. J Clin Microbiol. 1999;37:464–466.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Suzuki K, Meek B, Doi Y. Aberrant expansion of segmented filamentous bacteria in iga-deficient gut. Proc Natl Acad Sci USA. 2004;101:1981–1986.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lyra A, Rinttila T, Nikkila J, et al. Diarrhoea-predominant irritable bowel syndrome distinguishable by 16s rRNA gene phylotype quantification. World J Gastroenterol. 2009;15:5936–5945.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kassinen A, Krogius-Kurikka L, Makivuokko H, et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology. 2007;133:24–33.

    Article  CAS  PubMed  Google Scholar 

  30. Parkes GC, Rayment NB, Hudspith BN, et al. Distinct microbial populations exist in the mucosa-associated microbiota of sub-groups of irritable bowel syndrome. Neurogastroenterol Motil. 2011;24:31–39.

    Article  PubMed  Google Scholar 

  31. Yoon JS, Sohn W, Lee OY, et al. Effect of multispecies probiotics on irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. J Gastroenterol Hepatol. 2014;29:52–59.

    Article  PubMed  Google Scholar 

  32. Kerckhoffs AP, Samsom M, van der Rest ME, et al. Lower bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J Gastroenterol. 2009;15:2887–2892.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Spiller R. Review article: probiotics and prebiotics in irritable bowel syndrome. Aliment Pharmacol Ther. 2008;28:385–396.

    Article  CAS  PubMed  Google Scholar 

  34. Jeffery IB, Quigley EM, Ohman L, Simren M, O’Toole PW. The microbiota link to irritable bowel syndrome: an emerging story. Gut Microbes. 2012;3:572–576.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ghoshal UC, Shukla R, Ghoshal U, Gwee KA, Ng SC, Quigley EMM. The gut microbiota and irritable bowel syndrome: friend or foe? Int J Inflamm. 2012.

  36. Salonen A, de Vos WM, Palva A. Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology. 2010;156:3205–3215.

    Article  CAS  PubMed  Google Scholar 

  37. King TS, Elia M, Hunter JO. Abnormal colonic fermentation in irritable bowel syndrome. Lancet. 1998;352:1187–1189.

    Article  CAS  PubMed  Google Scholar 

  38. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–180.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human gut microbiota: the bacteroidetes sus-like paradigm. J Biol Chem. 2009;284:24673–24677.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Rios-Covian D, Arboleya S, Hernandez-Barranco AM, et al. Interactions between bifidobacterium and bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria. Appl Environ Microbiol. 2013;79:7518–7524.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ng SC, Lam EF, Lam TT, et al. Effect of probiotic bacteria on the intestinal microbiota in irritable bowel syndrome. J Gastroenterol Hepatol. 2013;28:1624–1631.

    PubMed  Google Scholar 

  42. Tana C, Umesaki Y, Imaoka A, Handa T, Kanazawa M, Fukudo S. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil. 2010;22:512–519, e114–515.

  43. Liu C, Finegold SM, Song Y, Lawson PA. Reclassification of clostridium coccoides, ruminococcus hansenii, ruminococcus hydrogenotrophicus, ruminococcus luti, ruminococcus productus and ruminococcus schinkii as blautia coccoides gen. Nov., comb. Nov., blautia hansenii comb. Nov., blautia hydrogenotrophica comb. Nov., blautia luti comb. Nov., blautia producta comb. Nov., blautia schinkii comb. Nov. And description of blautia wexlerae sp. Nov., isolated from human faeces. Int J Syst Evol Microbiol. 2008;58:1896–1902.

    Article  CAS  PubMed  Google Scholar 

  44. Treem WR, Ahsan N, Kastoff G, Hyams JS. Fecal short-chain fatty acids in patients with diarrhea-predominant irritable bowel syndrome: In vitro studies of carbohydrate fermentation. J Pediatr Gastroenterol Nutr. 1996;23:280–286.

    Article  CAS  PubMed  Google Scholar 

  45. Bourdu S, Dapoigny M, Chapuy E, et al. Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology. 2005;128:1996–2008.

    Article  CAS  PubMed  Google Scholar 

  46. Chichlowski M, Hale LP. Bacterial-mucosal interactions in inflammatory bowel disease: an alliance gone bad. Am J Physiol Gastrointest Liver Physiol. 2008;295:G1139–G1149.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Dulon S, Leduc D, Cottrell GS, et al. Pseudomonas aeruginosa elastase disables proteinase-activated receptor 2 in respiratory epithelial cells. Am J Respir Cell Mol Biol. 2005;32:411–419.

    Article  CAS  PubMed  Google Scholar 

  48. Vergnolle N. Clinical relevance of proteinase activated receptors (pars) in the gut. Gut. 2005;54:867–874.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Srivastava D, Ghoshal U, Mittal RD, Ghoshal UC. Associations between IL-1RA polymorphisms and small intestinal bacterial overgrowth among patients with irritable bowel syndrome from India. Neurogastroenterol Motil. 2014;26:1408–1416.

    Article  CAS  PubMed  Google Scholar 

  50. Rodriguez-Fandino O, Hernandez-Ruiz J, Schmulson M. From cytokines to toll-like receptors and beyond—current knowledge and future research needs in irritable bowel syndrome. J Neurogastroenterol Motil. 2010;16:363–373.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Zhong W, Zhou Z. Alterations of the gut microbiome and metabolome in alcoholic liver disease. World J Gastrointest Pathophysiol. 2014;5:514–522.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all the patients and volunteers for taking part in this study. Ratnakar Shukla thanks the Department of Science and Technology for providing his fellowship.

Conflict of interest

There is no financial conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjala Ghoshal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, R., Ghoshal, U., Dhole, T.N. et al. Fecal Microbiota in Patients with Irritable Bowel Syndrome Compared with Healthy Controls Using Real-Time Polymerase Chain Reaction: An Evidence of Dysbiosis. Dig Dis Sci 60, 2953–2962 (2015). https://doi.org/10.1007/s10620-015-3607-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3607-y

Keywords

Navigation