Skip to main content

Advertisement

Log in

Reverse-Phase Protein Array Analysis to Identify Biomarker Proteins in Human Pancreatic Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Pancreatic cancer is the fourth leading cause of cancer death in the United States. The high mortality rate of patients with pancreatic cancer is primarily due to the difficulty of early diagnosis and a lack of effective therapies. There is an urgent need to discover novel molecular targets for early diagnosis and new therapeutic approaches to improve the clinical outcome of this deadly disease.

Aim

We utilized the reverse-phase protein assay (RPPA) to identify differentially expressed biomarker proteins in tumors and matched adjacent, normal-appearing tissue samples from 15 pancreatic cancer patients.

Methods

The antibody panel used for the RPPA included 130 key proteins involved in various cancer-related pathways. The paired t test was used to determine the significant differences between matched pairs, and the false discovery rate-adjusted p values were calculated to take into account the effect of multiple comparisons.

Results

After correcting for multiple comparisons, we found 19 proteins that had statistically significant differences in expression between matched pairs. However, only four (AKT, β-catenin, GAB2, and PAI-1) of them met the conservative criteria (both a q value <0.05 and a fold-change of ≥3/2 or ≤2/3) to be considered differentially expressed. Overexpression of AKT, β-catenin, and GAB2 in pancreatic cancer tissues identified by RPPA has also been further confirmed by western blot analysis. Further analysis identified several significantly associated canonical pathways and overrepresented network functions.

Conclusion

GAB2, a newly identified protein in pancreatic cancer, may provide additional insight into this cancer’s pathogenesis. Future studies in a larger population are warranted to further confirm our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  2. American Cancer Society. Cancer Facts and Figures 2012. Atlanta, GA: American Cancer Society; 2012.

    Google Scholar 

  3. Sultana A, Smith CT, Cunningham D, Starling N, Neoptolemos JP, Ghaneh P. Meta-analyses of chemotherapy for locally advanced and metastatic pancreatic cancer. J Clin Oncol. 2007;25:2607–2615.

    Article  PubMed  Google Scholar 

  4. Reni M, Cordio S, Milandri C, et al. Gemcitabine versus cisplatin, epirubicin, fluorouracil, and gemcitabine in advanced pancreatic cancer: a randomised controlled multicentre phase III trial. Lancet Oncol. 2005;6:369–376.

    Article  PubMed  CAS  Google Scholar 

  5. Rocha Lima CM, Green MR, Rotche R, et al. Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. J Clin Oncol. 2004;22:3776–3783.

    Google Scholar 

  6. Liang JJ, Kimchi ET, Staveley–O’Carroll KF, Tan D. Diagnostic and prognostic biomarkers in pancreatic carcinoma. Int J Clin Exp Pathol. 2009;2:1–10.

    PubMed Central  PubMed  Google Scholar 

  7. Misek DE, Patwa TH, Lubman DM, Simeone DM. Early detection and biomarkers in pancreatic cancer. J Natl Compr Canc Netw. 2007;5:1034–1041.

    PubMed  CAS  Google Scholar 

  8. Duffy MJ, Sturgeon C, Lamerz R, et al. Tumor markers in pancreatic cancer: a European Group on Tumor Markers (EGTM) status report. Ann Oncol. 2010;21:441–447.

    Article  PubMed  CAS  Google Scholar 

  9. Garcea G, Neal CP, Pattenden CJ, Steward WP, Berry DP. Molecular prognostic markers in pancreatic cancer: a systematic review. Eur J Cancer. 2005;41:2213–2236.

    Article  PubMed  CAS  Google Scholar 

  10. Steinberg W. The clinical utility of the CA 19-9 tumor-associated antigen. Am J Gastroenterol. 1990;85:350–355.

    PubMed  CAS  Google Scholar 

  11. Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat Rev Cancer. 2003;3:267–275.

    Article  PubMed  CAS  Google Scholar 

  12. Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis. 1997;18:533–537.

    Article  PubMed  CAS  Google Scholar 

  13. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5:993–996.

    Article  PubMed  CAS  Google Scholar 

  14. Xiao GG, Recker RR, Deng HW. Recent advances in proteomics and cancer biomarker discovery. Clin Med Oncol. 2008;2:63–72.

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Shen J, Person MD, Zhu J, Abbruzzese JL, Li D. Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res. 2004;64:9018–9026.

    Article  PubMed  CAS  Google Scholar 

  16. Iadevaia S, Lu Y, Morales FC, Mills GB, Ram PT. Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res. 2010;70:6704–6714.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Object-Oriented Microarray and Proteomic Analysis (OOMPA). Available at: http://bioinformatics.mdanderson.org/main/OOMPA:Overview. Accessed 6 November 2013.

  18. de Hoon MJ, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics. 2004;20:1453–1454.

    Article  PubMed  CAS  Google Scholar 

  19. White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012;142:219–232.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Cheng JQ, Ruggeri B, Klein WM, et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA. 1996;93:3636–3641.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Takeuchi Y, Nakao A, Harada A, Nonami T, Fukatsu T, Takagi H. Expression of plasminogen activators and their inhibitors in human pancreatic carcinoma: immunohistochemical study. Am J Gastroenterol. 1993;88:1928–1933.

    PubMed  CAS  Google Scholar 

  22. Niedergethmann M, Alves F, Neff JK, et al. Gene expression profiling of liver metastases and tumour invasion in pancreatic cancer using an orthotopic SCID mouse model. Br J Cancer. 2007;97:1432–1440.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Pei H, Li L, Fridley BL, et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell. 2009;16:259–266.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–1806.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Hong SM, Park JY, Hruban RH, Goggins M. Molecular signatures of pancreatic cancer. Arch Pathol Lab Med. 2011;135:716–727.

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.

    Article  PubMed  CAS  Google Scholar 

  27. Nakatani K, Thompson DA, Barthel A, et al. Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer lines. J Biol Chem. 1999;274:21528–21532.

    Article  PubMed  CAS  Google Scholar 

  28. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene. 2005;24:7482–7492.

    Article  PubMed  CAS  Google Scholar 

  29. Clark AS, West K, Streicher S, Dennis PA. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther. 2002;1:707–717.

    PubMed  CAS  Google Scholar 

  30. Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24:7455–7464.

    Article  PubMed  CAS  Google Scholar 

  31. Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 2005;8:179–183.

    Article  PubMed  CAS  Google Scholar 

  32. Powis G, Ihle N, Kirkpatrick DL. Practicalities of drugging the phosphatidylinositol-3-kinase/Akt cell survival signaling pathway. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12:2964–2966.

    Article  CAS  Google Scholar 

  33. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441:424–430.

    Article  PubMed  CAS  Google Scholar 

  34. Nishida K. Role of adaptor molecule Gab2 in mast cell-mediated allergy response. Yakugaku Zasshi. 2013;133:413–418.

    Article  PubMed  CAS  Google Scholar 

  35. Vaughan TY, Verma S, Bunting KD. Grb2-associated binding (Gab) proteins in hematopoietic and immune cell biology. Am J Blood Res. 2011;1:130–134.

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Nishida K, Hirano T. The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors. Cancer Sci. 2003;94:1029–1033.

    Article  PubMed  CAS  Google Scholar 

  37. Pan XL, Ren RJ, Wang G, Tang HD, Chen SD. The Gab2 in signal transduction and its potential role in the pathogenesis of Alzheimer’s disease. Neurosci Bull. 2010;26:241–246.

    Article  PubMed  CAS  Google Scholar 

  38. Wohrle FU, Daly RJ, Brummer T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal. 2009;7:22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Holgado-Madruga M, Moscatello DK, Emlet DR, Dieterich R, Wong AJ. Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor. Proc Natl Acad Sci USA. 1997;94:12419–12424.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Gu H, Maeda H, Moon JJ, et al. New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol Cell Biol. 2000;20:7109–7120.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Daly RJ, Gu H, Parmar J, et al. The docking protein Gab2 is overexpressed and estrogen regulated in human breast cancer. Oncogene. 2002;21:5175–5181.

    Article  PubMed  CAS  Google Scholar 

  42. Fleuren ED, O’Toole S, Millar EK, et al. Overexpression of the oncogenic signal transducer Gab2 occurs early in breast cancer development. Int J Cancer. 2010;127:1486–1492.

    Article  PubMed  CAS  Google Scholar 

  43. Horst B, Gruvberger-Saal SK, Hopkins BD, et al. Gab2-mediated signaling promotes melanoma metastasis. Am J Pathol. 2009;174:1524–1533.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Zatkova A, Schoch C, Speleman F, et al. GAB2 is a novel target of 11q amplification in AML/MDS. Genes Chromosom Cancer. 2006;45:798–807.

    Article  PubMed  CAS  Google Scholar 

  45. Wang Y, Sheng Q, Spillman MA, Behbakht K, Gu H. Gab2 regulates the migratory behaviors and E-cadherin expression via activation of the PI3K pathway in ovarian cancer cells. Oncogene. 2012;31:2512–2520.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Lee SH, Jeong EG, Nam SW, Lee JY, Yoo NJ. Increased expression of Gab2, a scaffolding adaptor of the tyrosine kinase signalling, in gastric carcinomas. Pathology. 2007;39:326–329.

    Article  PubMed  CAS  Google Scholar 

  47. Xu XL, Wang X, Chen ZL, et al. Overexpression of Grb2-associated binder 2 in human lung cancer. Int J Biol Sci. 2011;7:496–504.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Chien AJ, Conrad WH, Moon RT. A Wnt survival guide: from flies to human disease. J Invest Dermatol. 2009;129:1614–1627.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Zeng G, Germinaro M, Micsenyi A, et al. Aberrant Wnt/beta-catenin signaling in pancreatic adenocarcinoma. Neoplasia. 2006;8:279–289.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Pasca di Magliano M, Biankin AV, Heiser PW, et al. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma. PLoS One. 2007;2:e1155.

  51. Wang L, Heidt DG, Lee CJ, et al. Oncogenic function of ATDC in pancreatic cancer through Wnt pathway activation and beta-catenin stabilization. Cancer Cell. 2009;15:207–219.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Inoue M, Sawada T, Uchima Y, et al. Plasminogen activator inhibitor-1 (PAI-1) gene transfection inhibits the liver metastasis of pancreatic cancer by preventing angiogenesis. Oncol Rep. 2005;14:1445–1451.

    PubMed  CAS  Google Scholar 

  53. Beyer BC, Heiss MM, Simon EH, et al. Urokinase system expression in gastric carcinoma: prognostic impact in an independent patient series and first evidence of predictive value in preoperative biopsy and intestinal metaplasia specimens. Cancer. 2006;106:1026–1035.

    Article  PubMed  CAS  Google Scholar 

  54. Lindberg P, Larsson A, Nielsen BS. Expression of plasminogen activator inhibitor-1, urokinase receptor and laminin gamma-2 chain is an early coordinated event in incipient oral squamous cell carcinoma. Int J Cancer. 2006;118:2948–2956.

    Google Scholar 

  55. Hundsdorfer B, Zeilhofer HF, Bock KP, et al. Tumour-associated urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 in normal and neoplastic tissues of patients with squamous cell cancer of the oral cavity—clinical relevance and prognostic value. J Craniomaxillofac Surg. 2005;33:191–196.

    Article  PubMed  Google Scholar 

  56. Lara PC, Lloret M, Valenciano A, et al. Plasminogen activator inhibitor-1 (PAI-1) expression in relation to hypoxia and oncoproteins in clinical cervical tumors. Strahlenther Onkol. 2012;188:1139–1145.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health through the University of Texas MD Anderson Cancer Center Support Grant CA016672 (R. DePinho), research grant R03 CA132103 (C. Wei), and Seed Funding Research Program Grant from Duncan Family Institute in the University of Texas MD Anderson Cancer Center (C. Wei). We thank Diane Hackett and Jill Delsigne for their editorial comments.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongjuan Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YJ., Frazier, M.L., Zhang, N. et al. Reverse-Phase Protein Array Analysis to Identify Biomarker Proteins in Human Pancreatic Cancer. Dig Dis Sci 59, 968–975 (2014). https://doi.org/10.1007/s10620-013-2938-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2938-9

Keywords

Navigation