Skip to main content

Advertisement

Log in

Silencing of GATA6 Suppresses SW1990 Pancreatic Cancer Cell Growth In Vitro and Up-Regulates Reactive Oxygen Species

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background/Aims

Pancreatic cancer has the worst prognosis of any gastrointestinal cancer with a mortality rate approaching its incidence. Previous studies have indicated that GATA6 plays a key role in organ development and function, and that abnormal expression of GATA6 may induce tumorigenesis. Meanwhile, it has been reported that generation of reactive oxygen species contributes to carcinogenesis. In this study, we set out to study the role of GATA6 expression on proliferation and apoptosis of pancreatic cancer cells and the role of reactive oxygen species.

Methods

Four target miRNA sequences against GATA6 mRNA were synthesized and used to transfect SW1990 cells. Then, GATA6 expression in SW1990 cells was examined by western blot and quantative real-time polymerase chain reaction. Cell proliferation was examined by WST-8 and colony formation assay. Cell cycle progression and apoptosis were measured by flow cytometry. We also measured the generation of reactive oxygen species by immunofluorescence and flow cytometry.

Results

RNA interference against GATA6 successfully inhibited mRNA and protein expression of GATA6 in the SW1990 pancreatic cancer cell line. Silencing of GATA6 by RNA interference inhibited cell proliferation and increased apoptosis of SW1990, and enhanced the expression of reactive oxygen species.

Conclusions

These results suggest that the RNA interference approach against GATA6 may be an effective therapeutic approach for treatment of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2013;63(1):11–30.

    Article  PubMed  Google Scholar 

  2. Vähätalo R, Asikainen TM, Karikoski R, et al. Expression of transcription factor GATA-6 in alveolar epithelial cells is linked to neonatal lung disease. Neonatology. 2011;99(3):231–240.

    Article  PubMed  Google Scholar 

  3. Ketola I, Otonkoski T, Pulkkinen MA, et al. Transcription factor GATA-6 is expressed in the endocrine and GATA-4 in the exocrine pancreas. Mol Cell Endocrinol. 2004;226(1–2):51–57.

    Article  PubMed  CAS  Google Scholar 

  4. Haveri H, Westerholm-Ormio M, Lindfors K, et al. Transcription factors GATA-4 and GATA-6 in normal and neoplastic human gastrointestinal mucosa. BMC Gastroenterol. 2008;8:9.

    Article  PubMed  Google Scholar 

  5. Tian Y, Yuan L, Goss AM, et al. Characterization and in vivo pharmacological rescue of a Wnt2-Gata6 pathway required for cardiac inflow tract development. Dev Cell. 2010;18(2):275–287.

    Article  PubMed  CAS  Google Scholar 

  6. Ketola I, Otonkoski T, Pulkkinen MA, et al. Transcription factor GATA-6 is expressed in the endocrine and GATA-4 in the exocrine pancreas. Mol Cell Endocrinol. 2004;226:51–57.

    Article  PubMed  CAS  Google Scholar 

  7. Wang H, Liu Z, Li J, Zhao X, Wang Z, Xu H. ΔNp63α mediates proliferation and apoptosis in human gastric cancer cells by the regulation of GATA-6. Neoplasma. 2012;59:416–423.

    Article  PubMed  CAS  Google Scholar 

  8. Lin L, Bass AJ, Lockwood WW, et al. Activation of GATA binding protein 6 (GATA6) sustains oncogenic lineage-survival in esophageal adenocarcinoma. Proc Natl Acad Sci USA. 2012;109:4251–4256.

    PubMed  CAS  Google Scholar 

  9. Kwei KA, Bashyam MD, Kao J, et al. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer. PLoS Genet. 2008;4:e1000081.

    Article  PubMed  Google Scholar 

  10. Lindholm PM, Soini Y, Myllärniemi M, et al. Expression of GATA-6 transcription factor in pleural malignant mesothelioma and metastatic pulmonary adenocarcinoma. Clin Pathol. 2009;62:339–344.

    Article  CAS  Google Scholar 

  11. Salonen J, Rajpert-De Meyts E, Mannisto S, et al. Differential developmental expression of transcription factors GATA-4 and GATA-6, their cofactor FOG-2 and downstream target genes in testicular carcinoma in situ and germ cell tumors. Eur J Endocrinol. 2010;162:625–631.

    Article  PubMed  CAS  Google Scholar 

  12. Gonzalez M, Li F. DNA replication. RNAi and epigenetic inheritance. Epigenetics. 2012;7(1):14–19.

    Article  PubMed  CAS  Google Scholar 

  13. Han W, Xie J, Fang Y, Wang Z, Pan H. Nec-1 enhances shikonin-induced apoptosis in leukemia cells by inhibition of RIP-1 and ERK1/2. Int J Mol Sci. 2012;13:7212–7225.

    Article  PubMed  CAS  Google Scholar 

  14. Xie XY, Yang C, Ren M, Hao SY, Zhu P, Yan L. Inhibition of matrix metalloproteinase 9 expression in rat dermal fibroblasts using small interfering RNA. J Am Podiatr Med Assoc. 2012;102:299–308.

    PubMed  Google Scholar 

  15. Huang L, Ma J, Tang Y, et al. siRNA-based targeting of fractalkine overexpression suppresses inflammation development in a severe acute pancreatitis rat model. Int J Mol Med. 2012;30:514–520.

    PubMed  CAS  Google Scholar 

  16. Tseng CW, Huang HC, Shih AC, et al. Revealing the anti-tumor effect of artificial miRNA p-27-5p on human breast carcinoma cell line T-47D. Int J Mol Sci. 2012;13:6352–6369.

    Article  PubMed  CAS  Google Scholar 

  17. Liu X, Fang H, Chen H, et al. An artificial miRNA against HPSE suppresses melanoma invasion properties, correlating with a down-regulation of chemokines and MAPK phosphorylation. PLoS ONE. 2012;7:e38659.

    Article  PubMed  CAS  Google Scholar 

  18. Massirer KB, Perez SG, Mondol V, Pasquinelli AE. The miR-35-41 family of microRNAs regulates RNAi sensitivity in Caenorhabditis elegans. PLoS Genet. 2012;8:e1002536.

    Article  PubMed  CAS  Google Scholar 

  19. Manavella PA, Koenig D, Weigel D. Plant secondary siRNA production determined by microRNA-duplex structure. Proc Natl Acad Sci USA. 2012;109:2461–2466.

    Article  PubMed  CAS  Google Scholar 

  20. Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci. 2011;36:30–38.

    Article  PubMed  CAS  Google Scholar 

  21. Chung JS, Lee SB, Park SH, et al. Mitochondrial reactive oxygen species originating from Romo1 exert an important role in normal cell cycle progression by regulating p27(Kip1) expression. Free Radic Res. 2009;43(8):729–737.

    Article  PubMed  CAS  Google Scholar 

  22. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updates. 2004;7:97–110.

    Article  CAS  Google Scholar 

  23. Park SH, Kim JH, Chi GY, et al. Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of reactive oxygen species. Toxicol Lett. 2012;212:252–261.

    Article  PubMed  CAS  Google Scholar 

  24. Maeda M, Ohashi K, Ohashi-Kobayashi A. Further extension of mammalian GATA-6. Dev Growth Differ. 2005;47:591–600.

    Article  PubMed  CAS  Google Scholar 

  25. Fujikura J, Yamato E, Yonemura S, et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 2002;16:784–789.

    Article  PubMed  CAS  Google Scholar 

  26. Molkentin JD. The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem. 2000;275:38949–38952.

    Article  PubMed  CAS  Google Scholar 

  27. Ketola I, Toppari J, Vaskivuo T, et al. Transcription factor GATA-6, cell proliferation, apoptosis, and apoptosis-related proteins Bcl-2 and Bax in human fetal testis. J Clin Endocrinol Metab. 2003;88:1858–1865.

    Article  PubMed  CAS  Google Scholar 

  28. Collisson EA, Sadanandam A, Olson P, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17(4):500–504.

    Article  PubMed  CAS  Google Scholar 

  29. Zhong Y, Wang Z, Fu B, et al. GATA6 activates Wnt signaling in pancreatic cancer by negatively regulating the Wnt antagonist Dickkopf-1. PLoS ONE. 2011;6(7):e22129.

    Article  PubMed  CAS  Google Scholar 

  30. Nie F, Zhang X, Qi Q, et al. Reactive oxygen species accumulation contributes to gambogic acid-induced apoptosis in human hepatoma SMMC-7721 cells. Toxicology. 2009;260:60–67.

    Article  PubMed  CAS  Google Scholar 

  31. Yang LJ, Chen Y, He J, et al. Effects of gambogic acid on the activation of caspase-3 and downregulation of SIRT1 in RPMI-8226 multiple myeloma cells via the accumulation of ROS. Oncol Lett. 2012;3:1159–1165.

    PubMed  CAS  Google Scholar 

  32. Adachi Y, Shibai Y, Mitsushita J, et al. Oncogenic Ras upregulates NADPH oxidase 1 gene expression through MEK-ERK-dependent phosphorylation of GATA-6. Oncogene. 2008;27:4921–4932.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Wanling Yang (Hong Kong University, China) for his helpful discussion of the manuscript and the Lab of Target Therapy of Sun Yat-sen Memorial Hospital for the technical assistance. This research was supported in part by a grant from the Natural Science Foundation of Guangdong Province (No. 815100890100013, 04009381) and Medical Scientific Research Foundation of Guangdong Province (No. B2009066).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Neng Zhang.

Additional information

Wen-Bo Chen and Feng-Ting Huang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WB., Huang, FT., Zhuang, YY. et al. Silencing of GATA6 Suppresses SW1990 Pancreatic Cancer Cell Growth In Vitro and Up-Regulates Reactive Oxygen Species. Dig Dis Sci 58, 2518–2527 (2013). https://doi.org/10.1007/s10620-013-2752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2752-4

Keywords

Navigation