Skip to main content

Advertisement

Log in

The Jagged-1/Notch-1/Hes-1 Pathway Is Involved in Intestinal Adaptation in a Massive Small Bowel Resection Rat Model

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Notch signaling is required for the maintenance of intestinal epithelial proliferation. Dysfunction of this signaling pathway is associated with the loss of proliferated crypt epithelial cells.

Aim

The aim of this study was to investigate the role of Notch signaling in small bowel resection (SBR)-associated crypt epithelial cell proliferation.

Methods

Male Sprague–Dawley rats were subjected to sham operation (bowel transection and reanastomosis) or 70 % mid-SBR. Intestinal tissue samples were collected at 0.5, 1, 6, 12, 24, 72, and 168 h after operation. The expression of Notch pathway mRNAs and proteins was analyzed using RT-PCR and Western blot. The expression of the Notch pathway proteins Jagged-1, NICD and Hes-1 was also determined through immunohistochemical staining using day 3 postoperative intestinal tissues. The degree of crypt epithelial cell proliferation was evaluated using the immunohistochemical staining of proliferating cell nuclear antigen (PCNA). Furthermore, IEC-6 cells were used to examine the function of the Jagged-1 signaling system.

Results

SBR led to increased crypt epithelial cell proliferation and increased expression of Jagged-1 and Hes-1 mRNA and protein along with cleaved Notch-1. Immunohistochemical staining showed that Jagged-1, cleaved Notch-1 and Hes-1 colocalized in the same proliferated crypt epithelial cell population. Recombinant Jagged-1 significantly stimulated the proliferation of IEC-6 cells. Transient upregulation of Jagged-2 expression was found 1 h after SBR, and it was accompanied by cleaved Notch-1 and Hes-1 upregulation.

Conclusion

The Jagged-1/Notch-1/Hes-1 signaling pathway is involved in intestinal adaptation through increasing crypt epithelial cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Potten CS, Wilson JW, Booth C. Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium. Stem Cells. 1997;15:82.

    Article  PubMed  CAS  Google Scholar 

  2. Williamson RC. Intestinal adaptation (second of two parts). Mechanisms of control. N Engl J Med. 1978;298:1444–1450.

    Article  PubMed  CAS  Google Scholar 

  3. Williamson RC. Intestinal adaptation (first of two parts). Structural, functional and cytokinetic changes. N Engl J Med. 1978;298:1393–1402.

    Article  PubMed  CAS  Google Scholar 

  4. Botsios DS, Vasiliadis KD. Factors enhancing intestinal adaptation after bowel compensation. Dig Dis Sci. 2003;21:228–236.

    Article  CAS  Google Scholar 

  5. Baron M. An overview of the Notch signalling pathway. Semin Cell Dev Biol. 2003;14:113–119.

    Article  PubMed  CAS  Google Scholar 

  6. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–776.

    Article  PubMed  CAS  Google Scholar 

  7. Riccio O, van Gijn ME, Bezdek AC, et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep. 2008;9:377–383.

    Article  PubMed  CAS  Google Scholar 

  8. Murata K, Hattori M, Hirai N, et al. Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol. 2005;25:4262–4271.

    Article  PubMed  CAS  Google Scholar 

  9. Bernal NP, Stehr W, Zhang Y, Profitt S, Erwin CR, Warner BW. Evidence for active Wnt signaling during postresection intestinal adaptation. J Pediatr Surg. 2005;40:1025–1029.

    Article  PubMed  Google Scholar 

  10. Tang Y, Swietlicki EA, Jiang S, et al. Increased apoptosis and accelerated epithelial migration following inhibition of hedgehog signaling in adaptive small bowel postresection. Am J Physiol Gastrointest Liver Physiol. 2006;290:G1280–G1288.

    Article  PubMed  CAS  Google Scholar 

  11. Schröder N, Gossler A. Expression of Notch pathway components in fetal and adult mouse small intestine. Gene Expr Patterns. 2002;2:247–250.

    Article  PubMed  Google Scholar 

  12. Sander GR, Powell BC. Expression of notch receptors and ligands in the adult gut. J Histochem Cytochem. 2004;52:509–516.

    Article  PubMed  CAS  Google Scholar 

  13. Struhl G, Greenwald I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature. 1999;398:522–525.

    Article  PubMed  CAS  Google Scholar 

  14. Bailey AM, Posakony JW. Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev. 1995;9:2609–2622.

    Article  PubMed  CAS  Google Scholar 

  15. Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature. 2005;435:964–968.

    Article  PubMed  CAS  Google Scholar 

  16. Stanger BZ, Datar R, Murtaugh LC, Melton DA. Direct regulation of intestinal fate by Notch. Proc Natl Acad Sci USA. 2005;102:12443–12448.

    Article  PubMed  CAS  Google Scholar 

  17. Ueo T, Imayoshi I, Kobayashi T, et al. The role of Hes genes in intestinal development, homeostasis and tumor formation. Development. 2012;139:1071–1082.

    Article  PubMed  CAS  Google Scholar 

  18. Bar Y, Russ HA, Knoller S, Ouziel-Yahalom L, Efrat S. HES-1 is involved in adaptation of adult human beta-cells to proliferation in vitro. Diabetes. 2008;57:2413–2420.

    Article  PubMed  CAS  Google Scholar 

  19. Köhler C, Bell AW, Bowen WC, Monga SP, Fleig W, Michalopoulos GK. Expression of notch-1 and its ligand jagged-1 in rat liver during liver regeneration. Hepatology. 2004;39:1056–1065.

    Article  PubMed  Google Scholar 

  20. Adolphe C, Wainwright B. Pathways to improving skin regeneration. Expert Rev Mol Med. 2005;7:1–14.

    Article  PubMed  Google Scholar 

  21. Kobayashi T, Terada Y, Kuwana H, et al. Expression and function of the Delta-1/Notch-2/Hes-1 pathway during experimental acute kidney injury. Kidney Int. 2008;73:1240–1250.

    Article  PubMed  CAS  Google Scholar 

  22. Croquelois A, Domenighetti AA, Nemir M, et al. Control of the adaptive response of the heart to stress via the Notch1 receptor pathway. J Exp Med. 2008;5:3173–3185.

    Article  Google Scholar 

  23. Siveke JT, Lubeseder-Martellato C, Lee M, et al. Notch signaling is required for exocrine regeneration after acute pancreatitis. Gastroenterology. 2008;134:544–555.

    Article  PubMed  CAS  Google Scholar 

  24. Ma XB, Jia XS, Liu YL, et al. Expression and role of Notch signalling in the regeneration of rat tracheal epithelium. Cell Prolif. 2009;42:15–28.

    Article  PubMed  CAS  Google Scholar 

  25. Okamoto R, Tsuchiya K, Nemoto Y, et al. Requirement of Notch activation during regeneration of the intestinal epithelia. Am J Physiol Gastrointest Liver Physiol. 2009;296:G23–G35.

    Article  PubMed  CAS  Google Scholar 

  26. Wang W, Xiao W, Sun L, Zhang C, Chen G, Yang H. Inhibition of ACE activity contributes to the intestinal structural compensation in a massive intestinal resection rat model. Pediatr Surg Int. 2012;28:533–541.

    Article  PubMed  Google Scholar 

  27. van Es JH, van Gijn ME, Riccio O, et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005;435:959–963.

    Article  PubMed  Google Scholar 

  28. Wong GT, Manfra D, Poulet FM, et al. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem. 2004;279:12876–12882.

    Article  PubMed  CAS  Google Scholar 

  29. Milano J, McKay J, Dagenais C, et al. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci. 2004;82:341–358.

    Article  PubMed  CAS  Google Scholar 

  30. Kwon SM, Eguchi M, Wada M, et al. Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation. 2008;118:157–165.

    Article  PubMed  Google Scholar 

  31. Jundt F, Pröbsting KS, Anagnostopoulos I, et al. Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood. 2004;103:3511–3515.

    Article  PubMed  CAS  Google Scholar 

  32. Reedijk M, Odorcic S, Zhang H, et al. Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol. 2008;33:1223–1229.

    PubMed  Google Scholar 

  33. Skipper M, Lewis J. Getting to the guts of enteroendocrine differentiation. Nat Genet. 2000;24:3–4.

    Article  PubMed  CAS  Google Scholar 

  34. van Den Brink GR, de Santa Barbara P, Roberts DJ. Development. Epithelial cell differentiation—a Mather of choice. Science. 2001;294:2115–2116.

    Article  Google Scholar 

  35. Warner BW, Vander Kolk WE, Can G, Helmrath MA, Shin CE, Erwin CR. Epidermal growth factor receptor expression following small bowel resection. J Surg Res. 1997;70:171–177.

    Article  PubMed  CAS  Google Scholar 

  36. Aguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature. 2010;467:323–327.

    Article  PubMed  CAS  Google Scholar 

  37. Purow BW, Sundaresan TK, Burdick MJ, et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis. 2008;29:918–925.

    Article  PubMed  CAS  Google Scholar 

  38. McMellen ME, Wakeman D, Erwin CR, Guo J, Warner BW. Epidermal growth factor receptor signaling modulates chemokine (CXC) ligand 5 expression and is associated with villus angiogenesis after small bowel resection. Surgery. 2010;148:364–370.

    Article  PubMed  Google Scholar 

  39. Kayahara T, Sawada M, Takaishi S, et al. Candidate markers for stem and early progenitor cells, Musashi-1 and Hes1, are expressed in crypt base columnar cells of mouse small intestine. FEBS Lett. 2003;535:131–135.

    Article  PubMed  CAS  Google Scholar 

  40. Tang Y, Swietlicki EA, Jiang S, et al. Increased apoptosis and accelerated epithelial migration following inhibition of hedgehog signaling in adaptive small bowel postresection. Am J Physiol Gastrointest Liver Physiol. 2006;290:1280–1288.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (Nos. 81020108023, 81272078,81200288) and the Chongqing Science and Technology Commission International Key Collaboration Project (CSTC 201110008).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Sun, L., Yu, M. et al. The Jagged-1/Notch-1/Hes-1 Pathway Is Involved in Intestinal Adaptation in a Massive Small Bowel Resection Rat Model. Dig Dis Sci 58, 2478–2486 (2013). https://doi.org/10.1007/s10620-013-2680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2680-3

Keywords

Navigation