Skip to main content

Advertisement

Log in

Readressing the Role of Toll-Like Receptor-4 Alleles in Inflammatory Bowel Disease: Colitis, Smoking, and Seroreactivity

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Toll-like receptor (TLR) polymorphisms, and especially TLR-4 Asp299Gly and TLR-4 Thr399Ile, have been linked with Crohn’s disease (CD) and to a lesser extent with ulcerative colitis (UC), CD behavior, and compromised seroreactivity to microbial antigens. Available data, however, are conflicting.

Aims

To address these issues, the distribution of TLR-4 polymorphic alleles was assessed in patients with UC, CD, and healthy controls (HC), considering patient and disease characteristics as well as related serological markers.

Methods

TLR-4 Asp299Gly and TLR-4 Thr399Ile polymorphisms were determined in 187 UC and 163 CD patients and 274 randomly selected HC. C reactive protein, anti-Saccharomyces cerevisiae mannan antibodies, anti-mannobioside carbohydrate antibodies, anti-laminariobioside carbohydrate antibodies IgG, and anti-chitobioside carbohydrate antibodies (ACCA) IgA levels were also assessed.

Results

UC and especially pancolitis patients carried the mutant alleles more frequently compared to CD patients and HC or UC patients with different disease extents (P = 0.002 and P < 0.0001, respectively). Involvement of the colon was more frequent in CD patients with mutant TLR-4 compared to those with wild-type alleles (P = 0.004). Levels and positivity rates of ACCA IgA were lower in inflammatory bowel disease (IBD) patients carrying the mutant compared to those with wild-type alleles (0.075 < P < 0.05). Despite the mutant TLR-4 predisposition for UC pancolitis, smoking was associated with more limited disease (P < 0.001).

Conclusions

The presence of TLR-4 Asp299Gly and TLR-4 Thr399Ile polymorphisms is related to UC pancolitis, involvement of the colon in CD, and lower ACCA IgA levels. Smoking reduces the extent of UC, even in the presence of mutant alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baumgart DC. What’s new in inflammatory bowel disease in 2008? World J Gastroenterol. 2008;14:329–330.

    Article  PubMed  Google Scholar 

  2. Rodriguez-Bores L, Fonseca GC, Villeda MA, et al. Novel genetic markers in inflammatory bowel disease. World J Gastroenterol. 2007;13:5560–5570.

    PubMed  CAS  Google Scholar 

  3. Franchimont D, Vermeire S, El Housni H, et al. Deficient host-bacteria interactions in inflammatory bowel disease? The Toll-like receptor (TLR)-4 Asp299Gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut. 2004;53:987–992.

    Article  PubMed  CAS  Google Scholar 

  4. Torok HP, Glas J, Tonenchi L, et al. Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol. 2004;112:85–91.

    Article  PubMed  CAS  Google Scholar 

  5. De Jager PL, Franchimont D, Waliszewska A, et al. The role of the toll receptor pathway in susceptibility to inflammatory bowel diseases. Genes Immun. 2007;8:387–397.

    Article  PubMed  Google Scholar 

  6. Browning BL, Huebner C, Petermann I, et al. Has Toll-like receptor 4 been prematurely dismissed as an inflammatory bowel disease gene? Association study combined with meta-analysis shows strong evidence for association. Am J Gastroenterol. 2007;102:2504–2512.

    Article  PubMed  CAS  Google Scholar 

  7. Brand S, Staudinger T, Schnitzler F, et al. The role of Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms and CARD15/NOD2 mutations in the susceptibility and phenotype of Crohn’s disease. Inflamm Bowel Dis. 2005;11:645–652.

    Article  PubMed  Google Scholar 

  8. De Ridder L, Weersma RK, Dijkstra G, et al. Genetic susceptibility has a more important role in pediatric-onset Crohn’s disease than in adult-onset Crohn’s disease. Inflamm Bowel Dis. 2007;19:317–320.

    Google Scholar 

  9. Braat H, Stokkers P, Hommes T, et al. Consequence of function Nod2 and Tlr4 mutations on gene transcription in Crohn’s disease patients. J Mol Med. 2005;83:601–605.

    Article  PubMed  CAS  Google Scholar 

  10. Fries W, Renda MC, Lo Presti MA, et al. Intestinal permeability and genetic determinants in patients, first-degree relatives, and controls in a high-incidence area of Crohn’s disease in Southern Italy. Am J Gastroenterol. 2005;100:2730–2736.

    Article  PubMed  CAS  Google Scholar 

  11. Hume GE, Fowler EV, Doecke J, et al. Novel NOD2 haplotype strengthens the association between TLR4 Asp299gly and Crohn’s disease in an Australian population. Inflamm Bowel Dis. 2008;14:585–590.

    Article  PubMed  Google Scholar 

  12. Oostenbrug LE, Drenth JP, de Jong DJ, et al. Association between Toll-like receptor 4 and inflammatory bowel disease. Inflamm Bowel Dis. 2005;11:567–575.

    Article  PubMed  Google Scholar 

  13. Ouburg S, Mallant-Hent R, Crusius JB, et al. The Toll-like receptor 4 (TLR4) Asp299Gly polymorphism is associated with colonic localization of Crohn’s disease without a major role for the Saccharomyces cerevisiae manna-LBP-CD14-TLR4 pathway. Gut. 2005;54:439–440.

    PubMed  CAS  Google Scholar 

  14. Baumgart DC, Buning C, Geerdts L, et al. The c.1-260C>t promoter variant of CD14 but not the c.896A>G (p.D299G) variant of Toll-like receptor 4 (TLR4) genes is associated with inflammatory bowel disease. Digestion. 2007;76:196–202.

    Article  PubMed  CAS  Google Scholar 

  15. Lakatos PL, Altorjay I, Szamosi T, et al. Pancreatic autoantibodies are associated with reactivity to microbial antibodies, penetrating disease behavior, perianal disease, and extraintestinal manifestations, but not with NOD2/CARD15 or TLR4 genotype in a Hungarian IBD cohort. Inflamm Bowel Dis. 2009;15:365–374.

    Article  PubMed  Google Scholar 

  16. Arnott ID, Ho GT, Nimmo ER, et al. Toll-like receptor 4 gene in IBD: further evidence for genetic heterogeneity in Europe. Gut. 2005;54:308.

    PubMed  CAS  Google Scholar 

  17. Rigoli L, Romano C, Caruso RA, et al. Clinical significance of NOD2/CARD15 and Toll-like receptor 4 gene single nucleotide polymorphisms in inflammatory bowel disease. World J Gastroenterol. 2008;14:4454–4461.

    Article  PubMed  CAS  Google Scholar 

  18. Hong L, Leung E, Fraser AG, et al. TLR2, TLR4 and TLR9 polymorphisms and Crohn’s disease in a New Zealand Caucasian cohort. J Gastroenterol Hepatol. 2007;22:1760–1766.

    Article  PubMed  CAS  Google Scholar 

  19. Henckaerts L, Pierik M, Joossens M, et al. Mutations in pattern recognition receptor genes modulate seroreactivity to microbial antigens in patients with inflammatory bowel disease. Gut. 2007;56:1536–1542.

    Article  PubMed  CAS  Google Scholar 

  20. Ferwerda B, McCall MB, Verheijen K, et al. Functional consequences of toll-like receptor 4 polymorphisms. Mol Med. 2008;14:346–352.

    Article  PubMed  CAS  Google Scholar 

  21. Ferwerda B, McCall MB, Alonso S, et al. TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci USA. 2007;104:16645–16650.

    Article  PubMed  Google Scholar 

  22. Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13:1050–1059.

    Article  PubMed  CAS  Google Scholar 

  23. Kim JJ, Sears DD. TLR4 and insulin resistance. Gastroenterol Res Pract. 2010. Available at http://www.hindawi.com/journals/grp/2010/212563. Accessed January 5, 2012.

  24. Shen X, Shi R, Zhang H, et al. The Toll-like receptor 4 D299G and T399I polymorphisms are associated with Crohn’s disease and ulcerative colitis: a meta-analysis. Digestion. 2010;81:69–77.

    Article  PubMed  CAS  Google Scholar 

  25. Cario E. Toll-like receptors in inflammatory bowel diseases: a decade later. Inflamm Bowel Dis. 2010;16:1583–1597.

    Article  PubMed  Google Scholar 

  26. Best WR, Becktel JM, Singleton JW, et al. Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology. 1976;70:439–444.

    PubMed  CAS  Google Scholar 

  27. Rachmilewitz D. Coated mesalazine (5-aminosalicylic acid) versus sulphasalazine in the treatment of active ulcerative colitis: a randomised trial. BMJ. 1989;298:82–86.

    Article  PubMed  CAS  Google Scholar 

  28. Gasche C, Scholmerich J, Brynskov J, et al. A simple classification of Crohn’s disease: report of the working party for the world congresses of gastroenterology, Vienna 1998. Inflamm Bowel Dis. 2000;6:8–15.

    Article  PubMed  CAS  Google Scholar 

  29. Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a working party of the 2005 Montreal world congress of gastroenterology. Can J Gastroenterol. 2005;19:5–36.

    PubMed  Google Scholar 

  30. Satra M, Vamvakopoulou DN, Sioutopoulou DO, et al. Sequence-based genotyping HPV L1 DNA&RNA transcripts in clinical specimens. Pathol Res Pract. 2009;205:863–869.

    Article  PubMed  CAS  Google Scholar 

  31. Eckmann L. Innate immunity. In: Johnson LR, Barrett KE, Ghishan FK, eds. Physiology of the gastrointestinal tract, vol. 2. Amsterdam: Elsevier; 2006:1033–1066.

    Google Scholar 

  32. Arseneau KO, Tamagawa H, Pizzaro TT, et al. Innate and adaptive immune responses related to IBD pathogenesis. Cur Gastroenterol Rep. 2007;9:508–512.

    Article  Google Scholar 

  33. Hadley C. Should auld acquaintance be forgot. EMBO Rep. 2004;5:1122–1124.

    Article  PubMed  CAS  Google Scholar 

  34. Himmel ME, Hardenberg G, Piccirillo CA, et al. The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease. Immunology. 2008;125:145–153.

    Article  PubMed  CAS  Google Scholar 

  35. Fukata M, Abreu MT. TLR4 signalling in the intestine in health and disease. Biochem Soc Trans. 2007;35:1473–1478.

    Article  PubMed  CAS  Google Scholar 

  36. Torchinsky MB, Garaude J, Martin AP, et al. Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature. 2009;458:78–82.

    Article  PubMed  CAS  Google Scholar 

  37. Fukata M, Chen A, Klepper A, et al. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine. Gastroenterology. 2006;131:862–877.

    Article  PubMed  CAS  Google Scholar 

  38. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cel. 2004;118:229–241.

    Article  CAS  Google Scholar 

  39. Fukata M, Michelsen KS, Eri R, et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1055–G1065.

    Article  PubMed  CAS  Google Scholar 

  40. Ali S, Tamboli CP. Advances in epidemiology and diagnosis of inflammatory bowel diseases. Cur Gastroenterol Rep. 2008;10:576–584.

    Article  Google Scholar 

  41. Rallabhandi P, Bell J, Boukhvalova MS, et al. Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling. J Immunol. 2006;177:322–332.

    PubMed  CAS  Google Scholar 

  42. Prohinar P, Rallabhandi P, Weiss JP, et al. Expression of functional D299G. T399I polymorphic variant of TLR4 depends more on coexpression of MD-2 than does wild-type TLR4. J Immunol. 2010;184:4362–4367.

    Article  PubMed  CAS  Google Scholar 

  43. Manolakis AC, Kapsoritakis AN, Tiaka EK, et al. Impact of TLR-4 polymorphisms on circulating levels of antibodies against Helicobacter pylori. Helicobacter. 2010;15:481–482.

    Article  PubMed  CAS  Google Scholar 

  44. Frolova L, Drastich P, Rossmann P, et al. Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. J Histochem Cytochem. 2008;56:267–274.

    Article  PubMed  CAS  Google Scholar 

  45. Deng J, Ma-Krupa W, Gewirtz AT, et al. Toll-like receptors 4 and 5 induce distinct types of vasculitis. Circ Res. 2009;104:488–495.

    Article  PubMed  CAS  Google Scholar 

  46. Liu Y, Zhang Z, Wang L, et al. TLR4 monoclonal antibody blockade suppresses dextran-sulfate-sodium-induced colitis in mice. J Gastroenterol Hepatol. 2010;25:209–214.

    Article  PubMed  CAS  Google Scholar 

  47. Ungaro R, Fukata M, Hsu D, et al. A novel Toll-like receptor antagonist antibody ameliorates inflammation but impairs mucosal healing in murine colitis. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1167–G1179.

    Article  PubMed  CAS  Google Scholar 

  48. Savoye G, Lerebours E. Toll-Like Receptor-4 signaling: a possible candidate pathway to support tobacco smoking effects in ulcerative colitis. Am J Gastroenterol. 2008;103:2947–2948.

    Article  PubMed  Google Scholar 

  49. Bessa J, Bachmann MF. T cell-dependent and -independent IgA responses: role of TLR signaling. Immunol Invest. 2010;39:407–428.

    Article  PubMed  CAS  Google Scholar 

  50. Abreu M. Toll-like receptor signaling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10:131–134.

    Article  PubMed  CAS  Google Scholar 

  51. Heimesaat MM, Fischer A, Siegmund B, et al. Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via Toll-like receptors 2 and 4. PLoS ONE. 2007;2:e662.

    Article  PubMed  Google Scholar 

  52. Heimesaat MM, Fischer A, Jahn HK, et al. Exacerbation of murine ileitis by Toll-like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli. Gut. 2007;56:941–948.

    Article  PubMed  CAS  Google Scholar 

  53. McCarthy MI, Zeggini E. Genome-wide association studies in type 2 diabetes. Curr Diab Rep. 2009;9:164–171.

    Article  PubMed  CAS  Google Scholar 

  54. McCarthy MI, Hirschhorn JN. Genome-wide association studies: past, present and future. Hum Mol Genet. 2008;17:R100–R101.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Maria Satra for expert technical assistance and Dr. Georgios Nasioulas for sequence analysis of clinical specimens. Grant support for the current project was offered by the Hellenic Society of Gastroenterology.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros P. Potamianos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manolakis, A.C., Kapsoritakis, A.N., Kapsoritaki, A. et al. Readressing the Role of Toll-Like Receptor-4 Alleles in Inflammatory Bowel Disease: Colitis, Smoking, and Seroreactivity. Dig Dis Sci 58, 371–380 (2013). https://doi.org/10.1007/s10620-012-2348-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2348-4

Keywords

Navigation