Skip to main content
Log in

Mechanosensation and Mucosal Blood Perfusion in the Esophagus of Healthy Volunteers Studied with a Multimodal Device Incorporating Laser Doppler Flowmetry and Endosonography

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Both mechanical and ischemic mechanisms can cause gastrointestinal pain. We investigated whether discomfort and pain caused by bag distension in the esophagus of healthy subjects correlated best with mechanical forces (stress), deformation (strain), or mucosal perfusion. Twenty-nine subjects underwent ramp bag distension using a novel catheter design incorporating high-frequency intraluminal ultrasound, laser Doppler flowmetry, and manometry. Perfusion, pressure, and geometric data were analyzed at visual analog scale (VAS) levels 1–7 in 19 subjects. The circumferential stress increased exponentially as a function of volume, whereas strain showed a linear increase. The perfusion showed a modest decline, on average 15% from baseline to VAS = 7. A significant association was found between the sensory response and stress and strain (P < 0.05). No significant association was found between the sensory response and perfusion. In conclusion, the discomfort and pain response to bag distension in the esophagus is likely to be caused by mechanical rather than ischemic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSB:

Butylscopolamine bromide

LDF:

Laser Doppler flowmetry

PU:

Perfusion unit

CSA:

Cross-sectional area

VAS:

Visual analog scale

References

  1. Joshi SK, Gebhart GF. Visceral pain. Curr Rev Pain. 2000;4:499–506.

    CAS  PubMed  Google Scholar 

  2. Drewes AM, Gregersen H. Multimodal pain stimulation of the gastrointestinal tract. World J Gastroenterol. 2006;12:2477–2486.

    PubMed  Google Scholar 

  3. Sengupta JN. Electrophysiological recording from neurons controlling sensory and motor functions of the esophagus. Am J Med. 2001;111(Suppl 8A):169S–173S.

    Article  PubMed  Google Scholar 

  4. Richter JE, Barish CF, Castell DO. Abnormal sensory perception in patients with esophageal chest pain. Gastroenterology. 1986;91:845–852.

    CAS  PubMed  Google Scholar 

  5. Gregersen H, Christensen J. Mechanically restricted regional blood flow might explain gastrointestinal pain. Nat Clin Pract Gastroenterol Hepatol. 2005;2:378–379.

    Article  PubMed  Google Scholar 

  6. Hoff DA, Gregersen H, Odegaard S, Nesje LB, Oevreboe K, Hausken T, Gilja OH, Matre K, Hatlebakk JG. A multimodal laser Doppler and endosonographic distension device for studying mechanosensation and mucosal blood flow in the oesophagus. Neurogastroenterol Motil. 2006;18:243–248.

    Article  CAS  PubMed  Google Scholar 

  7. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–370.

    Article  CAS  PubMed  Google Scholar 

  8. Eysenck SBG, Eysenck HJ, Barrett P. A revised version of the psychoticism scale. Pers Indiv Differ. 1985;6:21–29.

    Article  Google Scholar 

  9. Gregersen H. Mechanical properties in normal gastrointestinal tissue. In: Gregersen H, ed. Biomechanics of the Gastrointestinal Tract, 1st ed. London: Springer; 2003:219–222.

    Google Scholar 

  10. Gregersen H, Kassab G. Biomechanics of the gastrointestinal tract. Neurogastroenterol Motil. 1996;8:277–297.

    CAS  PubMed  Google Scholar 

  11. Drewes AM, Schipper KP, Dimcevski G, Petersen P, Andersen OK, Gregersen H, Arendt-Nielsen L. Multimodal assessment of pain in the esophagus: a new experimental model. Am J Physiol Gastrointest Liver Physiol. 2002;283:G95–G103.

    CAS  PubMed  Google Scholar 

  12. Gregersen H. Basic mechanical theory. In: Gregersen H, ed. Biomechanics of the Gastrointestinal Tract, 1st ed. London: Springer; 2003:52–55.

    Google Scholar 

  13. Gao C, Gregersen H. Biomechanical and morphological properties in rat large intestine. J Biomech. 2000;33:1089–1097.

    Article  CAS  PubMed  Google Scholar 

  14. Takeda T, Nabae T, Kassab G, Liu J, Mittal RK. Oesophageal wall stretch: the stimulus for distension induced oesophageal sensation. Neurogastroenterol Motil. 2004;16:721–728.

    Article  CAS  PubMed  Google Scholar 

  15. Gregersen H. Biomechanics of the Gastrointestinal Tract, 1st ed. London: Springer; 2003.

    Google Scholar 

  16. Liao D, Cassin J, Zhao J, Gregersen H. The geometric configuration and morphometry of the rabbit oesophagus during luminal pressure loading. Physiol Meas. 2006;27:703–711.

    Article  PubMed  Google Scholar 

  17. Liao D, Zhao J, Fan Y, Gregersen H. Two-layered quasi-3D finite element model of the oesophagus. Med Eng Phys. 2004;26:535–543.

    Article  PubMed  Google Scholar 

  18. Liao D, Fan Y, Zeng Y, Gregersen H. Stress distribution in the layered wall of the rat oesophagus. Med Eng Phys. 2003;25:731–738.

    Article  PubMed  Google Scholar 

  19. Kiel JW, Riedel GL, Shepherd AP. Autoregulation of canine gastric mucosal blood flow. Gastroenterology. 1987;93:12–20.

    CAS  PubMed  Google Scholar 

  20. Kiel JW, Riedel GL, Shepherd AP. Local control of canine gastric mucosal blood flow. Gastroenterology. 1987;93:1041–1053.

    CAS  PubMed  Google Scholar 

  21. Nygren A, Thorén A, Houltz E, Ricksten SE. Autoregulation of human jejunal mucosal perfusion during cardiopulmonary bypass. Anesth Analg. 2006;102:1617–1622.

    Article  PubMed  Google Scholar 

  22. Frøkjær JB, Andersen SD, Lundbye-Christensen S, Funch-Jensen P, Drewes AM, Gregersen H. Sensation and distribution of stress and deformation in the human oesophagus. Neurogastroenterol Motil. 2006;18:104–114.

    Article  PubMed  Google Scholar 

  23. Odegaard S, Kimmey MB, Martin RW, Yee HC, Cheung AH, Silverstein FE. The effects of applied pressure on the thickness, layers, and echogenicity of gastrointestinal wall ultrasound images. Gastrointest Endosc. 1992;38:351–356.

    Article  CAS  PubMed  Google Scholar 

  24. Gregersen H, Christensen J. Gastrointestinal tone. Neurogastroenterol Motil. 2000;12:501–508.

    Article  CAS  PubMed  Google Scholar 

  25. Barlow JD, Gregersen H, Thompson DG. Identification of the biomechanical factors associated with the perception of distension in the human esophagus. Am J Physiol Gastrointest Liver Physiol. 2002;282:G683–G689.

    CAS  PubMed  Google Scholar 

  26. Drewes AM, Pedersen J, Liu W, Arendt-Nielsen L, Gregersen H. Controlled mechanical distension of the human oesophagus: sensory and biomechanical findings. Scand J Gastroenterol. 2003;38:27–35.

    Article  CAS  PubMed  Google Scholar 

  27. Goudot-Pernot C, Champigneulle B, Bigard MA, Pernot C, Gaucher P. A comparative prospective study of an edrophonium test and an esophageal balloon distension test in 78 patients with non-coronary angina and 12 healthy controls. Ann Gastroenterol Hepatol. 1991;27:41–48.

    CAS  Google Scholar 

  28. Gregersen H. Biomechanical methods and analysis. In: Gregersen H, ed. Biomechanics of the Gastrointestinal Tract, 1st ed. London: Springer; 2003:77–80.

    Google Scholar 

  29. Leahy MJ, de Mul FF, Nilsson GE, Maniewski R. Principles and practice of the laser-Doppler perfusion technique. Technol Health Care. 1999;7:143–162.

    CAS  PubMed  Google Scholar 

  30. Boyle NH, Pearce A, Hunter D, Owen WJ, Mason RC. Intraoperative scanning laser Doppler flowmetry in the assessment of gastric tube perfusion during esophageal resection. J Am Coll Surg. 1999;188:498–502.

    Article  CAS  PubMed  Google Scholar 

  31. Shepherd AP, Riedel GL. Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry. Am J Physiol. 1982;242:G668–G672.

    CAS  PubMed  Google Scholar 

  32. Johnson JM, Taylor WF, Shepherd AP, Park MK. Laser-Doppler measurement of skin blood flow: comparison with plethysmography. J Appl Physiol. 1984;56:798–803.

    Article  CAS  PubMed  Google Scholar 

  33. Kvietys PR, Shepherd AP, Granger DN. Laser-Doppler, H2 clearance, and microsphere estimates of mucosal blood flow. Am J Physiol. 1985;249:G221–G227.

    CAS  PubMed  Google Scholar 

  34. Johansson K, Jakobsson A, Lindahl K, Lindhagen J, Lundgren O, Nilsson GE. Influence of fibre diameter and probe geometry on the measuring depth of laser Doppler flowmetry in the gastrointestinal application. Int J Microcirc Clin Exp. 1991;10:219–229.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Helse Vest RHF and Helse Sunnmøre HF for sponsorship. We would like to thank Sunniva Stiansen and Eva Fosse for their patient assistance during each investigation and Kjell and Bjørn Bakken at Perimed AB for kindly answering questions regarding the laser Doppler flowmetry. We are also grateful to Goerill Skaale Johansen at the Department of Photo and Illustration, University of Bergen, and Maria Sibbel at MGS Studio, Ames, USA, for their kind and professional help with the illustrations in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dag Arne Lihaug Hoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoff, D.A.L., Gregersen, H., Odegaard, S. et al. Mechanosensation and Mucosal Blood Perfusion in the Esophagus of Healthy Volunteers Studied with a Multimodal Device Incorporating Laser Doppler Flowmetry and Endosonography. Dig Dis Sci 55, 312–320 (2010). https://doi.org/10.1007/s10620-009-0731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-0731-6

Keywords

Navigation