Skip to main content

Advertisement

Log in

The Effects of Caffeic Acid Phenethyl Ester (CAPE) on TNBS-induced Colitis in Ovariectomized Rats

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Aim The aim of this investigation was to examine the effects of caffeic acid phenethyl ester (CAPE) on the development of colitis and antioxidant parameters in bilateral ovariectomized rats subjected to trinitrobenzene sulfonic acid (TNBS)-induced colitis. Materials and methods Twenty-one Wistar Albino ovariectomized female rats were divided into four subgroups (n = 5 or 6) (colitis control, vehicle control, CAPE 10 and 30 mg/kg, respectively). Colitis was induced using an enema of TNBS and ethanol, following which CAPE was administrated for 3 days to induce colitis and effect of CAPE was subsequently evaluated. Results Based on microscopic damage scores, there was no difference between rats of the TNBS-colitis and the vehicle-treated groups, whereas treatment with CAPE 10 and 30 mg/kg, respectively, caused a significant reduction in colon injury compared to that observed in rats of the TNBS-colitis and vehicle-treated groups. The histologies of both treatment groups were not significantly different. In terms of the biochemical analyses, myeloperoxidase levels in rats from the CAPE 10 and 30 mg/kg groups were significantly different from that of the colitis control rats; however, the levels of malondialdehyde (MDA), catalase and reduced glutathione (GSH) were only significantly different from the levels found colitis control rats in rats administered 10 mg/kg. The levels of MDA, GSH and SOD in rats given CAPE were also significantly different from those of rats in the vehicle control group. These results were consistent with histological findings. Conclusion CAPE may have a positive effect on the inflammatory bowel disease treatment process and could, therefore, be used as an adjunct therapy in colitis. These effects of CAPE may occur through anti-inflammatory and antioxidant mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grisham MB (1994) Oxidants and free radicals in inflammatory bowel disease. Lancet 344:859–861

    Article  PubMed  CAS  Google Scholar 

  2. Keshavarzian A, Banan A, Farhadi A, Komanduri S, Mutlu E, Zhang Y, Fields JZ (2003) Increases in free radicals and cytoskeletal protein oxidation and nitration in the colon of patients with inflammatory bowel disease. Gut 52:720–728

    Article  PubMed  CAS  Google Scholar 

  3. Lih-Brody L, Powell SR, Collier KP, Reddy GM, Cerchia R, Kahn E, Weissman GS, Katz S, Floyd RA, McKinley MJ, Fisher SE, Mullin GE (1996) Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease. Dig Dis Sci 41:2078–2086

    Article  PubMed  CAS  Google Scholar 

  4. Kruidenier L, Kuiper I, Van Duijn W, Mieremet-Ooms MA, van Hogezand RA, Lamers CB, Verspaget HW (2003) Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease. J Pathol 201:17–27

    Article  PubMed  CAS  Google Scholar 

  5. Grisham MB, McCord JM (1986) Chemistry and cytotoxicity of reactive oxygen metabolites. In: Taylor AE, Matalon S, Ward PA (eds) Physiology of oxygen radicals. Williams and Wilkins, Baltimore, pp 1–18

    Google Scholar 

  6. Weiss SJ (1986) Oxygen, ischemia and inflammation. Acta Physiol Scand 548:9–37

    CAS  Google Scholar 

  7. Williams JG, Hughes LE, Hallett MB (1990) Toxic oxygen metabolite production by circulating phagocytic cells in inflammatory bowel disease. Gut 31:187–193

    Article  PubMed  CAS  Google Scholar 

  8. Grisham MB, Gaginella TS, von Ritter C, Tamai H, Be RM, Granger DN (1990) Effects of neutrophil-derived oxidants on intestinal permeability, electrolyte transport, and epithelial cell viability. Inflammation 14:531–542

    Article  PubMed  CAS  Google Scholar 

  9. Campbell-Thomson M, Lynch IJ, Bhardwaj B (2001) Expression of estrogen receptor (ER) subtypes and ER beta isoforms in colon cancer. Cancer Res 61:632–640

    Google Scholar 

  10. Konstantinopoulos PA, Kominea A, Vandoros G, Sykiotis GP, Andricopoulos P, Varakis I, Sotiropoulou-Bonikou G, Papavassiliou AG (2003) Oestrogen receptor beta (ERbeta) is abundantly expressed in normal colonic mucosa, but declines in colon adenocarcinoma paralleling the tumour’s dedifferentiation. Eur J Cancer 39:1251–1258

    Article  PubMed  CAS  Google Scholar 

  11. Wada-Hiraike O, Warner M, Gustafsson JA (2006) New developments in oestrogen signalling in colonic epithelium. Biochem Soc Trans 34:1114–1116

    Article  PubMed  CAS  Google Scholar 

  12. Wada-Hiraike O, Imamov O, Hiraike H, Hultenby K, Schwend T, Omoto Y, Warner M, Gustafsson JA (2005) Role of estrogen receptor β in colonic epithelium. Proc Natl Acad Sci USA 103:2959–2964

    Article  CAS  Google Scholar 

  13. Herrington DM, Klein KP (2001) Effects of SERMs on important indicators of cardiovascular health: lipoproteins, hemostatic factors, endothelial function. Womens Health Issues 11:95–102

    Article  PubMed  CAS  Google Scholar 

  14. Stevenson M, Lloyd Jones M, De Nigris E, Brewer N, Davis S, Oakley J (2005) A systematic review and economic evaluation of alendronate, etidronate, risedronate, raloxifene and teriparatide for the prevention and treatment of postmenopausal osteoporosis. Health Technol Assess 9:1–160

    PubMed  CAS  Google Scholar 

  15. Bernardi F, Pluchino N, Stomati M, Pieri M, Genazzani AR (2003) CNS: sex steroids and SERMs. Ann NY Acad Sci 997:378–388

    Article  PubMed  CAS  Google Scholar 

  16. Kume-Kick J, Ferris DC, Russo-Menna I, Rice ME (1996) Enhanced oxidative stress in female rat brain after gonadectomy. Brain Res 738:8–14

    Article  PubMed  CAS  Google Scholar 

  17. Strehlow K, Rotter S, Wassman S, Adam O, Grohe C, Laufs K, Bohm M, Nickenig G (2003) Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 93:170–177

    Article  PubMed  CAS  Google Scholar 

  18. Munoz-Castaneda JR, Muntane J, Herencia C, Munoz MC, Bujolance I, Montilla P, Tunez I (2006) Ovariectomy exacerbates oxidative stress and cardiopathyinduced by adriamycin. Gynecol Endocrinol 22:74–79

    Article  PubMed  CAS  Google Scholar 

  19. Russo A, Longo R, Vanella A (2002) Antioxidant activity of propolis: role of caffeic acid phenethyl ester and galangin. Fitoterapia 73[Suppl 1]:21–29

    Article  Google Scholar 

  20. Sud’ina GF, Mirzoeva OK, Puskareva MA, Korshunova GA, Sumbatyan NV, Varfolomeev SD (1993) Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett 329:21–24

    Article  PubMed  CAS  Google Scholar 

  21. Cicala C, Morello S, Iorio C, Capasso R, Borrelli F, Mascolo N (2003) Vascular effects of caffeic acid phenethyl ester (CAPE) on isolated rat thoracic aorta. Life Sci 73:73–80

    Article  PubMed  CAS  Google Scholar 

  22. Fitzpatrick LR, Wang J, Le T (2001) Caffeic acid phenethyl ester, an inhibitor of nuclear factor-kappaB, attenuates bacterial peptidoglycan polysaccharide-induced colitis in rats. J Pharmacol Exp Ther 299:915–920

    PubMed  CAS  Google Scholar 

  23. Su ZZ, Grunberger D, Fisher PB (1991) Suppression of adenovirus type 5 EIA-mediated transformation and expression of the transformed phenotype by caffeic acid phenethyl ester (CAPE). Mol Carcinogen 4:231–242

    Article  CAS  Google Scholar 

  24. Marquez N, Sancho R, Macho A, Calzado MA, Fiebich BL, Munoz E (2004) Caffeic acid phenethyl ester inhibits T-cell activation by targeting both nuclear factor of activated T-cells and NF-kappaB transcription factors. J Pharmacol Exp Ther 308:993–1001

    Article  PubMed  CAS  Google Scholar 

  25. Ozer MK, Parlakpinar H, Acet A (2004) Reduction of ischemia-reperfusion induced myocardial infarct size in rats by caffeic acid phenethyl ester (CAPE). Clin Biochem 37:702–705

    Article  PubMed  CAS  Google Scholar 

  26. Ozguner F, Oktem F, Ayata A, Koyu A, Yilmaz HR (2005) A novel antioxidant agent caffeic acid phenethyl ester prevents long-term mobile phone exposure-induced renal impairment in rat. Mol Cell Biochem 277:73–80

    Article  PubMed  CAS  Google Scholar 

  27. Nemcsik J, Morschl E, Egresits J, Kordas K, Laszlo F, Laszlo AF, Pavo I (2004) Raloxifene lowers ischemia susceptibility by increasing nitric oxide generation in the heart of ovariectomized rats in vivo. Eur J Pharmacol 495:179–184

    Article  PubMed  CAS  Google Scholar 

  28. Konyalioglu S, Durmaz G, Yalcin A (2007) The potential antioxidant effect of raloxifene treatment: a study on heart, liver and brain cortex of ovariectomized female rats. Cell Biochem Funct 25:259–266

    Article  PubMed  CAS  Google Scholar 

  29. González R, Rodríguez S, Romay C, Ancheta O, González A, Armesto J, Remirez D, Merino N (1999) Anti-inflammatory activity of phycocyanin extract in acetic acid-induced colitis in rats. Pharmacol Res 39:55–59

    Article  PubMed  Google Scholar 

  30. Yavuz Y, Yuksel M, Yegen BC, Alican I (1999) The effect of antioxidant therapy on colonic inflammation in the rat. Res Exp Med (Berlin) 199:101–110

    Article  CAS  Google Scholar 

  31. Ademoglu E, Erbil Y, Tam B, Barbaros U, Ilhan E, Olgac V, Mutlu-Turkoglu U (2004) Do vitamin E and selenium have beneficial effects on trinitrobenzenesulfonic acid-induced experimental colitis. Dig Dis Sci 49:102–108

    Article  PubMed  CAS  Google Scholar 

  32. Gué M, Bonbonne C, Fioramonti J, Moré J, Del Rio-Lachèze C, Coméra C, Buéno L (1997) Stress-induced enhancement of colitis in rats: CRF and arginine vasopressin are not involved. Am J Physiol 272:84–91

    Google Scholar 

  33. Lowry OH, Risebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–270

    PubMed  CAS  Google Scholar 

  34. Suzuki K, Ota H, Sasagawa S, Sakatani T, Fujikura T (1983) Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem 132:345–352

    Article  PubMed  CAS  Google Scholar 

  35. Buege JA, Aust SD (1976) Lactoperroxidase catalysed lipid peroxidation of microsomal and artificial membranes. Biochem Biophys Acta 444:192–201

    PubMed  CAS  Google Scholar 

  36. Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  37. Fairbanks VF, Klee GG (1999) Biochemical aspects of hematology. In: Burtis CA, Ashwood ER (eds) Tietz textbook of clinical chemistry. WB Saunders, Philadelphia, pp 1642–1710

    Google Scholar 

  38. Yi S, Oberley LW ,Ying L (1998) A simple method for clinical assay of superoxide dismutase. Clin Chem 34/3:497–500

    Google Scholar 

  39. Lutoslawska G, Tkaczyk J, Panczenko-Kresowska B, Hubner-Wozniaka E, Skierskab E, Gajewski AK (2003) Plasma TBARS, blood GSH concentrations, and erythrocyte antioxidant enzyme activities in regularly menstruating women with ovulatory and anovulatory menstrual cycles. Clin Chim Acta 331:159–163

    Article  PubMed  CAS  Google Scholar 

  40. Chao T, Alten PV, Walter RJ (1994) Steroid sex hormones and macrophages function. Modulation of reactive oxygen intermediates and nitrite release. Am J Reprod Immunol 32:43–52

    PubMed  CAS  Google Scholar 

  41. Babbs CF (1992) Oxygen radicals in ulcerative colitis. Free Radic Biol Med 13:169–181

    Article  PubMed  CAS  Google Scholar 

  42. Keshavarzian A, Sedghi S, Kanofsky J, List T, Robinson C, İbrahim C, Winship D (1992) Excessive production of reactive oxygen metabolites by inflamed colon: analysis by chemiluminescence probe. Gastroenterology 103:177–185

    PubMed  CAS  Google Scholar 

  43. Nieto N, Torres MI, Fernandez MI, Giron MD, Rios A, Suarez MD, Gil A (2000) Experimental ulcerative colitis impairs antioxidant defense system in rat intestine. Dig Dis Sci 45:1820–1827

    Article  PubMed  CAS  Google Scholar 

  44. Grisham MB, Yamada T (1996) Neutrophils, nitrogen oxides, and inflammatory bowel disease. J Clin Invest 98:136–141

    Article  Google Scholar 

  45. McKenzie SJ, Baker MS, Buffington GD, Doe WF (1996) Evidence of oxidant-induced injury to epithelial cells during inflammatory bowel disease. J Clin Invest 98:136–141

    Article  PubMed  CAS  Google Scholar 

  46. D’Odorico A, Bortolan S, Cardin R, D’Inca R, Martines D, Ferronato A, Sturniolo GC (2001) Reduced plasma antioxidant concentrations and increased oxidative DNA damage in inflammatory bowel disease. Scand J Gastroenterol 36:1289–1294

    Article  PubMed  CAS  Google Scholar 

  47. Koch TR, Yuan LX, Stryker SJ, Ratliff P, Telforg GL, Opara EC (2000) Total antioxidant capacity of colon in patients with chronic ulcerative colitis. Dig Dis Sci 45:1814–1819

    Article  PubMed  CAS  Google Scholar 

  48. Southey A, Tanaka S, Murakami T, Miyoshi H, Ishizuka T, Sugiura M, Kawashima K, Sugita T (1997) Pathophysiological role of nitric oxide in rat experimental colitis. Int J Immunopharmacol 19:669–676

    Article  PubMed  CAS  Google Scholar 

  49. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96:795–803

    PubMed  CAS  Google Scholar 

  50. Grisham MB, Volkmer C, Tso P, Yamada T (1991) Metabolism of trinitrobenzene sulfonic acid by the rat colon produces reactive oxygen species. Gastroenterology 101:540–547

    PubMed  CAS  Google Scholar 

  51. Nosal’ova V, Cerna S, Bauer V (2000) Effect of N-acetylcysteine on colitis induced by acetic acid in rats. Gen Pharmacol 35:77–81

    PubMed  CAS  Google Scholar 

  52. Pentney PT, Bubenik GA (1995) Melatonin reduces the severity of dextran-induced colitis in mice. J Pineal Res 19:31–39

    Article  PubMed  CAS  Google Scholar 

  53. Simmonds NJ, Millar AD, Blake DR, Rampton DS (1999) Antioxidant effects of aminosalicylates and potential new drugs for inflammatory bowel disease: assessment in cell-free systems and inflamed human colorectal biopsies. Aliment Pharmacol Ther 13:363–372

    Article  PubMed  CAS  Google Scholar 

  54. Sud’ina GF; Mirzoeva OK, Puskareva MA Korshunova GA, Sumbatyan NV, Varfolomeev SD (1993) Caffeic acid phenehyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett 329:21

    Article  Google Scholar 

  55. Ozyurt H, Ozyurt B, Koca K, Ozgocmen S (2007) Caffeic acid phenethyl ester (CAPE) protects rat skeletal muscle against ischemia-reperfusion-induced oxidative stress. Vas Pharmacol 47:108–112

    Article  CAS  Google Scholar 

  56. Akyol A, Ulusoy H, İmamoglu M, Cay A, Yulug E, Alver A, Erturk E, Kosucu M, Besir A, Akyol A, Ozen I (2006) Does propofol or caffeic acid phenethyl ester prevent lung injury after hindlimb ischemia-reperfusion in ventilated rats? Injury 37:380–387

    Article  PubMed  Google Scholar 

  57. Bobin-Dubigeon X, Collin N, Grimaud JM, Robert G, Le Baut L, Petit JY (2001) Effects of tumor necrosis factor-α synthesis inhibitors on rat trinitrobenzene sulphonic acid-induced chronic colitis. Eur J Pharmacol 42:103–110

    Article  Google Scholar 

  58. Abreu MT (2002) The pathogenesis of inflammatory bowel disease: translational implications for clinicians. Curr Gastroenterol Rep 4:481–489

    Article  PubMed  Google Scholar 

  59. Krıidenier L, Verspaget HW (2002) Oxidative stress as apathogenic factor in inflammatory bowel disease-radicals or ridiculous? Aliment Pharmacol Ther 16:1997–2015

    Article  Google Scholar 

  60. Girgin F, Karaoglu O, Erkus M Tuzun S, Ozutemiz O, Dincer C, Batur Y, Tanyalcın T (2000) Effects of trimetazidine on oxidant/antioxidant status in trinitrobezenesulfonic acid-induced chronic colitis. J Toxicol Environ Health A 59:641–652

    Article  PubMed  CAS  Google Scholar 

  61. Verspaget HW, Pena AS, Weterman IT, Lamers CBHW (1988) Diminished neutrophil function in Crohn’s disease and ulcerative colitis identified by decreased oxidative metabolism and low superoxide dismutase content. Gut 29:223–228

    Article  PubMed  CAS  Google Scholar 

  62. Kuralay F, Yildiz C, Ozutemiz O. Islekel H, Caliskan S, Bingol B, Ozkal S (2003) Effects of trimetazidine on acetic acid-induced colitis in female swiss rats. J Toxicol Environ Health A 66:169–179

    Article  PubMed  CAS  Google Scholar 

  63. Zhou YH, Yu JP, Teng XJ, Ming M, Lv P, An P, Liu SQ, Yu HG (2006) Effects of Ginkgo biloba extract on inflammatory mediators (SOD, MDA, TNF-α, NF-κBp65, IL–6) in TNBS-induced colitis in rats. Mediators Inflamm 5:1–9

    Article  CAS  Google Scholar 

  64. Loeper J, Goy J, Rozensztajn L, Bedu O, Moisson P (1991) Lipid peroxidation and protective enzymes during myocardial infarction. Clin Chim Acta 196:119–125

    Article  PubMed  CAS  Google Scholar 

  65. Beno I, Staruchova M, Volkovova K, Mekinova D, Bobek P, Jurcovicova M (1994) Activity of the antioxidant system in patients with idiopathic proctocolitis and the effect of 5-aminosalicylic acid (Salofalk). Bratisl Lek Listy 95:99–102

    PubMed  CAS  Google Scholar 

  66. Beno I, Staruchova M, Batovsky M, Volkovova K (1996) Adenomatous and inflammatory colorectal polyps: antioxidant enzyme activity in the colon. Cas Lek Cesk 135:208–210

    PubMed  CAS  Google Scholar 

  67. Dong WG, Liu SP, Yu BP, Wu DF, Luo HS, Yu JP (2003) Ameliorative effects of sodium ferulate on experimental colitis and their mechanisms in rats. World J Gastroenterol 9:2533–2538

    PubMed  CAS  Google Scholar 

  68. Liu SP, Dong WG, Wu DF, Luo HS, Yu JP (2003) Protective effect of angelica sinensis polysaccharide on experimental immunological colon injury in rats. World J Gastroenterol 9:2786–2790

    PubMed  CAS  Google Scholar 

  69. Szabo S (1984) Role of sulfhydryls and early vascular lesions in gastric mucosal injury. Acta Physiol Hung 64:203–214

    PubMed  CAS  Google Scholar 

  70. Buffington GD, Doe WF (1995) Depleted mucosal antioxidant defenses in inflammatory bowel disease. Free Radic Biol Med 19:911–918

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rauf Onur Ek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ek, R.O., Serter, M., Ergin, K. et al. The Effects of Caffeic Acid Phenethyl Ester (CAPE) on TNBS-induced Colitis in Ovariectomized Rats. Dig Dis Sci 53, 1609–1617 (2008). https://doi.org/10.1007/s10620-007-0056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-007-0056-2

Keywords

Navigation