Skip to main content
Log in

Ultrasound-Determined Geometric and Biomechanical Properties of the Human Duodenum

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Methods based on cross-sectional ultrasound imaging may be valuable for assessment of biomechanical parameters in the duodenum in health and disease. In 12 healthy volunteers a specially designed duodenal bag containing a high-frequency ultrasound probe was inflated until the perception of moderate pain. The ultrasound images and bag pressures were recorded before and after administration of butylscopolamine. The duodenum approached a circular shape as the load was increased (P = 0.01). The tension-strain relations were exponential and the curve fitting constant α (stiffness) was 1.72±0.81 before and 1.13±0.22 after administration of butylscopolamine (P=0.5). In three subjects construction of stress-strain diagrams was possible. The wall thickness decreased after administration of butylscopolamine (P < 0.001). The wall thickness was nonhomogeneously distributed along the duodenal circumference, being thickest at high curvatures. In the future this may be useful for assessing the geometry, stiffness, remodeling, and mechanosensory properties in the duodenum and small intestine in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feldman M, Friedman LS, Sleisenger MH (2002) Sleisenger & Fordtran’s Gastrointestinal and liver diseases, 7th ed. Saunders, New York

    Google Scholar 

  2. Grainger RG, Allison D, Dixon AK (2001) Grainger & Allison’s diagnostic radiology. Churchill Livingstone, New York

    Google Scholar 

  3. Gregersen H (2003) Biomechanics of the gastrointestinal tract. Springer-Verlag, London

    Google Scholar 

  4. Gregersen H, Kassab G (1996) Biomechanics of the gastrointestinal tract. Neurogastroenterol Motil 8(4):277–297

    PubMed  CAS  Google Scholar 

  5. van der Schaar PJ, Lamers CB, Masclee AA (1999) The role of the barostat in human research and clinical practice. Scand J Gastroenterol Suppl 230:52–63

    Article  PubMed  CAS  Google Scholar 

  6. Ginzel KH (1960) Studies on the mechanism of the peristaltic reflex of the guinea pig ileum. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 238:104–1066

    PubMed  CAS  Google Scholar 

  7. Barlow JD, Gregersen H, Thompson DG (2002) Identification of the biomechanical factors associated with the perception of distension in the human esophagus. Am J Physiol Gastrointest Liver Physiol 282(4):G683–G689

    PubMed  CAS  Google Scholar 

  8. Gregersen H, Kraglund K, Djurhuus JC (1990) Variations in duodenal cross-sectional area during the interdigestive migrating motility complex. AmJ Physiol 259(1; Pt 1):G26–G31

    CAS  Google Scholar 

  9. Gregersen H, Orvar K, Christensen J (1992) Biomechanical properties of duodenal wall and duodenal tone during phase i and phase ii of the MMC. Am J Physiol 263(5; Pt 1):G795–G801

    PubMed  CAS  Google Scholar 

  10. Gao C, Arendt-Nielsen L, Liu W, Petersen P, Drewes AM, Gregersen H (2003) Sensory and biomechanical responses to ramp-controlled distension of the human duodenum. Am J Physiol Gastrointest Liver Physiol 284(3):G461–G471

    PubMed  CAS  Google Scholar 

  11. Sengupta JN, Gebhart GF (1994) Gastrointestinal afferent fibers and sensation. In: Johnson L (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 483–519

    Google Scholar 

  12. Christensen J (1984) Origin of sensation in the esophagus. Am J Physiol 246(3; Pt 1):G221–G225

    PubMed  CAS  Google Scholar 

  13. Jorgensen CS, Dall FH, Jensen SL, Gregersen H (1995) A new combined high-frequency ultrasound-impedance planimetry measuring system for the quantification of organ wall biomechanics in vivo. J Biomech 28(7):863–867

    Article  PubMed  CAS  Google Scholar 

  14. Assentoft JE, Gregersen H, O’Brien WDJr (2000) Determination of biomechanical properties in guinea pig esophagus by means of high frequency ultrasound and impedance planimetry. Dig Dis Sci 45(7):1260–1266

    Article  PubMed  CAS  Google Scholar 

  15. Nicosia MA, Brasseur JG, Liu JB, Miller LS (2001) Local longitudinal muscle shortening of the human esophagus from high-frequency ultrasonography. Am J Physiol Gastrointest Liver Physiol 281(4):G1022–G1033

    PubMed  CAS  Google Scholar 

  16. Dai Q, Liu JB, Brasseur JG, Thangada VK, Thomas B, Parkman H, Miller LS (2003) Volume (3-dimensional) space-time reconstruction of esophageal peristaltic contraction by using simultaneous US and manometry. Gastrointest Endosc 58(6):913–919

    Article  PubMed  Google Scholar 

  17. Frøkjær JB, Andersen SD, Lundbye-Christensen S, Funch-Jensen P, Drewes AM, Gregersen H (2006) Sensation and distribution of stress and deformation in the human esophagus. Neurogastroenterol Motil 18(2):104--114

    Google Scholar 

  18. Gao C, Petersen P, Liu W, Arendt-Nielsen L, Drewes AM, Gregersen H (2002) Sensory-motor responses to volume-controlled duodenal distension. Neurogastroenterol Motil 14(4):365–374

    Article  PubMed  CAS  Google Scholar 

  19. Drewes AM, Gregersen H, Arendt-Nielsen L (2003) Experimental pain in gastroenterology: a reappraisal of human studies. Scand J Gastroenterol 38(11):1115–1130

    Article  PubMed  CAS  Google Scholar 

  20. Fung YC (1990) Biomechanics, motion, flow and growth. Springer Verlag, New York

    Google Scholar 

  21. Gregersen H, Christensen J (2000) Gastrointestinal tone. Neurogastroenterol Motil 12(6):501–508

    Article  PubMed  CAS  Google Scholar 

  22. Fan Y, Gregersen H, Kassab GS (2004) A two-layered mechanical model of the rat esophagus. Experiment and theory. Biomed Eng Online 3(1):40

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Danish Health Research Council (SSVF), the Research Council of North Jutland County, the Danish Diabetes Association, the Toyota Foundation, the Obel Foundation, and the SparNord Foundation are acknowledged for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Gregersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frøkjær, J.B., Andersen, S.D., Drewes, A.M. et al. Ultrasound-Determined Geometric and Biomechanical Properties of the Human Duodenum. Dig Dis Sci 51, 1662–1669 (2006). https://doi.org/10.1007/s10620-005-9015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-005-9015-y

Key Words

Navigation