Skip to main content
Log in

Computing the Bargaining Approach for Equalizing the Ratios of Maximal Gains in Continuous-Time Markov Chains Games

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

This paper presents a novel approach for computing the Kalai–Smorodinsky bargaining equilibrium for continuous time and discrete states Markov chains games. To solve the bargaining situation we set the disagreement point as the Nash equilibrium of the problem, then to find the new agreement point we follow the bargaining model presented by Kalai–Smorodinsky employing the utopia point concept. We exemplify the game formulation in terms of nonlinear programming equations implementing the Lagrange principle. The Tikhonov’s regularization method is applied to ensure the convergence of the cost-functions to an equilibrium point. For solving the problem we use a programming method implemented by the extraproximal optimization approach. The proposed method is validated by a numerical example related to the labor market problem for a three-person bargaining problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander, C. (1992). The Kalai–Smorodinsky bargaining solution in wage negotiations. The Journal of the Operational Research Society, 43(8), 779–786.

    Article  Google Scholar 

  • Anant, T. C. A., Mukherji, B., & Basu, K. (1990). Bargaining without convexity: Generalizing the Kalai–Smorodinsky solution. Economics Letters, 33(2), 115–119.

    Article  Google Scholar 

  • Antipin, A. S. (1997a). Equilibrium programming: Gradient-type methods. Avtomatika i Telemekhanika, 8, 166–178.

    Google Scholar 

  • Antipin, A. S. (1997b). Equilibrium programming: Proximal methods. Computational Mathematics and Mathematical Physics, 37(11), 1285–1296.

    Google Scholar 

  • Antipin, A. S. (2005). An extraproximal method for solving equilibrium programming problems and games. Computational Mathematics and Mathematical Physics, 45(11), 1893–1914.

    Google Scholar 

  • Antipin, A. S., Artem’eva, L. A., & Vasil’ev, F. P. (2011). Extrapmethods method for solving two-person saddle-point games. Computational Mathematics and Mathematical Physics, 51(9), 1472–1482.

    Article  Google Scholar 

  • Driesen, B., Perea, A., & Peters, H. (2011). The Kalai–Smorodinsky bargaining solution with loss aversion. Mathematical Social Sciences, 61(1), 58–64.

    Article  Google Scholar 

  • Dubra, J. (2001). An asymmetric Kalai–Smorodinsky solution. Economics Letters, 73(2), 131–136.

    Article  Google Scholar 

  • Guo, X., & Hernández-Lerma, O. (2009). Continuous-time Markov decision processes: Theory and applications. Berlin: Springer.

    Book  Google Scholar 

  • Kalai, E., & Smorodinsky, M. (1975). Other solutions to Nashs bargaining problem. Econometrica, 43(3), 513–518.

    Article  Google Scholar 

  • Köbberling, V., & Peters, H. (2003). The effect of decision weights in bargaining problems. Journal of Economic Theory, 110(1), 154–175.

    Article  Google Scholar 

  • Moulin, H. (1984). Implementing the Kalai–Smorodinsky bargaining solution. Journal of Economic Theory, 33(1), 32–45.

    Article  Google Scholar 

  • Nash, J. F. (1950). The bargaining problem. Econometrica, 18(2), 155–162.

    Article  Google Scholar 

  • Nash, J. F. (1951). Non-cooperative games. Annals of Mathematics, 54, 286–295.

    Article  Google Scholar 

  • Peters, H., & Tijs, S. (1984). Individually monotonic bargaining solutions for n-person bargaining games. Methods of Operations Research, 51, 377–384.

    Google Scholar 

  • Poznyak, A. S. (2008). Advance mathematical tools for automatic control engineers. Volume 1 deterministic techniques. Amsterdam: Elsevier.

    Google Scholar 

  • Poznyak, A. S. (2009). Advance mathematical tools for automatic control engineers. Volume 2 stochastic techniques. Amsterdam: Elsevier.

    Google Scholar 

  • Poznyak, A. S., Najim, K., & Gomez-Ramirez, E. (2000). Self-learning control of finite markov chains. New York: Marcel Dekker Inc.

    Book  Google Scholar 

  • Raiffa, H. (1953). Arbitration schemes for generalized two-person games. Annals of Mathematics Studies, 28, 361–387.

    Google Scholar 

  • Roth, A. E. (1979). An impossibility result converning n-person bargaining games. International Journal of Game Theory, 8(3), 129–132.

    Article  Google Scholar 

  • Tanaka, K. (1989). The closest solution to the shadow minimum of a cooperative dynamic game. Computers & Mathematics with Applications, 18(1–3), 181–188.

    Article  Google Scholar 

  • Tanaka, K., & Yokoyama, K. (1991). On \(\epsilon \)-equilibrium point in a noncooperative n-person game. Journal of Mathematical Analysis and Applications, 160, 413–423.

    Article  Google Scholar 

  • Trejo, K. K., Clempner, J. B., & Poznyak, A. S. (2015). Computing the Stackelberg/Nash equilibria using the extraproximal method: Convergence analysis and implementation details for Markov chains games. International Journal of Applied Mathematics and Computer Science, 25(2), 337–351.

    Article  Google Scholar 

  • Trejo, K. K., Clempner, J. B., & Poznyak, A. S. (2017). Computing the strong \(l_p\)-nash equilibrium for markov chains games: Convergence and uniqueness. Applied Mathematical Modelling, 41, 399–418.

    Article  Google Scholar 

  • Zangwill, W. I. (1969). Nonlinear programming: A unified approach. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Zangwill, W. I., & Garcia, C. B. (1981). Pathways to solutions, fixed points and equilibria. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristal K. Trejo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trejo, K.K., Clempner, J.B. & Poznyak, A.S. Computing the Bargaining Approach for Equalizing the Ratios of Maximal Gains in Continuous-Time Markov Chains Games. Comput Econ 54, 933–955 (2019). https://doi.org/10.1007/s10614-018-9859-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-018-9859-9

Keywords

Navigation