Skip to main content
Log in

Measuring and Testing Tail Dependence and Contagion Risk Between Major Stock Markets

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

This paper studies the tail dependence for two smaller stock markets that are Taiwanese Taiex and South Korean Kospi against four larger stock markets that are S& P500, Nikkei, MSCI China, and MSCI Europe. The vector autoregression result indicates that both S&P500 and MSCI China indeed have the greatest impact and significance on the other four stock markets. However, the tail dependence of Taiex and Kospi versus either S&P500 or MSCI China are lower due to unilateral impacts from US or China. The Clayton copula yields the jumps of tail dependence and the elliptical copulas generate the trends of tail dependence. The threshold tests of Clayton Kendall’s taus between most stock markets are significant in both subprime and Greek debt crises while the tests of Student-t Kendall’s taus are only significant for the subprime crisis. It appears that the subprime has changeable trend and jump states of contagion risk while Greek debt has one steady trend state and changeable jump states of contagion risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Refer to Embrechts et al. (2002) for the relations between \(\rho _{\tau }, \rho _{s}\), and correlation coefficient \(\rho \).

References

  • Aas, K., & Berg, D. (2009). Models for construction of multivariate dependence—A comparison study. European Journal of Finance, 15(7–8), 639–659.

    Article  Google Scholar 

  • Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance, Mathematics and Economics, 44, 182–198.

    Article  Google Scholar 

  • Ang, A., & Bekaert, G. (1999). International asset allocation with time-varying correlations. NBER Working Paper 7056.

  • Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of Financial Economics, 63(3), 443–494.

    Article  Google Scholar 

  • Bae, K. H., Karolyi, G. A., & Stulz, R. M. (2003). A new approach to measuring financial contagion. The Review of Financial Studies, 16, 717–763.

    Article  Google Scholar 

  • Beford, T., & Cooke, R. (2001). Probabilistic risk analysis: Foundations and methods. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.

    Article  Google Scholar 

  • Bollerslev, T., Engle, R. F., & Wooldridge, J. M. (1988). A capital asset pricing model with time-varying covariances. The Journal of Political Economy, 96, 116–131.

    Article  Google Scholar 

  • Chen, M. C., Tsai, H. J., Sing, T. F., & Yang, C. Y. (2015). Contagion and downside risk in the REIT market during the subprime mortgage crisis. International Journal of Strategic Property, 19(1), 42–57.

    Article  Google Scholar 

  • Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. Chichester: John Wiley Finance Series.

    Book  Google Scholar 

  • Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141–151.

    Article  Google Scholar 

  • Ding, Z., Granger, C. W. J., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1, 83–106.

    Article  Google Scholar 

  • Doan, T. (2005). Varlagselect: RATS procedure to select lag length for a VAR model. Statistical Software Components RTS00228, Boston College Department of Economics.

  • Embrechts, P., Lindskog, F., & McNeil, A. (2001). Modelling dependence with copulas and applications to risk management. ETHZ, Working Paper.

  • Embrechts, P., McNeil, A., & Strauman, D. (2002). Correlation and dependence properties in risk management: Properties and pitfalls. In M. Dempster (Ed.), Risk management: Value at risk and beyond. Cambridge University Press.

  • Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987–1008.

    Article  Google Scholar 

  • Engle, R. F. (2002). Dynamic conditional correlation—A simple class of multivariate GARCH models. Journal of Business and Economic Statistics, 20(3), 339–350.

    Article  Google Scholar 

  • Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. The Journal of Finance, 48, 1749–1777.

    Article  Google Scholar 

  • Frank, M. J. (1979). On the simultaneous associativity of \(F(x, y)\) and \(x + y -F(x, y)\). Aequationes Mathamatics, 19, 194–226.

    Article  Google Scholar 

  • Glosten, L., Jagannathan, R., & Runkle, D. (1993). Relationship between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48, 1779–1801.

    Article  Google Scholar 

  • Gumbel, E. J. (1960). Bivariate exponential distributions. Journal of the American Statistical Association, 55, 698–707.

    Article  Google Scholar 

  • Hansen, B. E. (1996). Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica, 64(2), 413–430.

    Article  Google Scholar 

  • Hansson, B., & Hordahl, P. (1998). Testing the conditional CAPM using multivariate GARCH. Applied Financial Economics, 8, 377–388.

    Article  Google Scholar 

  • Hu, L. (2006). Dependence patterns across financial markets: A mixed copula approach. Applied Financial Economics, 16, 717–729.

    Article  Google Scholar 

  • Joe, H. (1997). Multivariate models and dependence concepts. Chapman and Hall.

  • Jondeau, E., & Rockinger, M. (2002). Conditional dependency of financial series: The copula-GARCH Model. FAME Research Paper Series rp69.

  • Jondeau, E., & Rockinger, M. (2006). The copula-Garch model of conditional dependencies: An international stock market application. Journal of International Money and Finance, 25, 827–853.

    Article  Google Scholar 

  • Krupskii, P., & Joe, H. (2013). Factor copula models for multivariate data. Journal of Multivariate Analysis, 120, 85–101.

    Article  Google Scholar 

  • Kurowicka, D., & Cooke, R. (2004). Distribution-free continuous Bayesian belief nets. In Proceedings in mathematical methods in reliability.

  • Longin, F., & Solnik, B. (2001). Extreme correlations in international Equity Markets. The Journal of Finance, 56, 649–676.

    Article  Google Scholar 

  • Longstaff, F. A. (2010). The subprime credit crisis and contagion in financial markets. Journal of Financial Economics, 97(3), 436–450.

    Article  Google Scholar 

  • Lu, Liu. (2014). Extreme downside risk spillover from the United States and Japan to Asia-Pacific stock markets. International Review of Financial Analysis, 33, 39–48.

    Article  Google Scholar 

  • Nelsen, R. B. (1999). An introduction to copulas. New York: Springer.

    Book  Google Scholar 

  • Nelson, D. B. (1991). Conditional heteroscedasticity in asset returns: A new approach. Econometrica, 59, 347–370.

    Article  Google Scholar 

  • Ng, L. (1991). Tests of the CAPM with time-varying covariances: A multivariate GARCH approach. The Journal of Finance, 46, 1507–1521.

    Article  Google Scholar 

  • Patton, A. J. (2001). Modelling time-varying exchange rate dependence using the conditional copula. Working Paper, U.C. San Diego.

  • Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International Economic Review, 47(2), 527–556.

    Article  Google Scholar 

  • Schweizer, B., & Wolff, E. (1981). On nonparametric measures of dependence for random variables. Annals of Statistics, 9, 879–885.

  • Sklar, A. W. (1959). Fonctions de répartitionà n- dimension et leurs marges. Publications de lSInstitut de Statistique de lSUniversité de Paris, 8, 229–231.

    Google Scholar 

  • Soofi, A. S., Li, Z., & Hui, X. (2012). Nonlinear interdependence of the Chinese stock markets. Quantitative Finance, 12(3), 397–410.

    Article  Google Scholar 

  • Tong, H., & Lim, K. (1980). Threshold autoregression, limit cycles, and cyclical data. Journal of the Royal Statistical Society, 42, 245–292.

    Google Scholar 

  • Tse, Y. K., & Tsui, K. C. (2002). A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations. Journal of Business and Economic Statistics, 20, 351–362.

    Article  Google Scholar 

  • Yip, P. S. L. (2014). The risk of property bubbles in Hong Kong and Singapore another aftershock risk of the global financial tsunami? Singapore Economic Review, 59(3). doi:10.1142/S021759081450026X.

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers and the editor for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EnDer Su.

Appendix: The Log Likelihood of Gaussian, Student-t, and Clayton Copula

Appendix: The Log Likelihood of Gaussian, Student-t, and Clayton Copula

  1. 1.

    The log likelihood of Gaussian copula is

$$\begin{aligned} L({\varvec{\varepsilon }}_t ;R)=1/2\sum _{t=1}^T (\log |\mathbf{R}|+ {\varvec{\varepsilon }}_t^{\prime } (\mathbf{R}^{-1}-I){\varvec{\varepsilon }}_t ), \end{aligned}$$
(20)

where \({\varvec{\varepsilon }}_t=({\phi }^{-1} (u_{1,t}),\ldots ,{\phi }^{-1} (u_{p,t}))\) is the vector of the transformed standardized residuals and \(\mathbf{R}\) is the correlation matrix of \({\varvec{\varepsilon }}_t \) and p is the number of residual series.

  1. 2.

    The log likelihood of Student-t copula

$$\begin{aligned} L({\varvec{\varepsilon }}_t ;\mathbf{R},v_{c} )= & {} -T\log \frac{\Gamma (\frac{v_c +p}{2})}{\Gamma (\frac{v_c }{2})}-pT\log \frac{\Gamma (\frac{v_c +p}{2})}{\Gamma (\frac{v_c }{2})}-\frac{v_c +p}{2}\sum _{t=1}^T {\log \left( 1+\frac{\mathbf{\varepsilon }_t^{\prime } \mathbf{R}^{-1}{\varvec{\varepsilon }}_t }{v_c }\right) } \nonumber \\&-\sum _{t=1}^T {\log |\mathbf{R}|+\frac{v_c +1}{2}\sum _{t=1}^T {\sum _{i=1}^p {\log \left( 1+\frac{\varepsilon _{i,t}^2 }{v_c }\right) , } } } \end{aligned}$$
(21)

where \(v_c \) is the degree of freedom.

  1. 3.

    The log likelihood of Clayton copula

$$\begin{aligned} L(\mathbf{u}_t ;\theta )=\sum _{t=1}^T {(\log (1+\theta )(u_{1,t} \cdot u_{2,t})^{-1-\theta }(u_{1t}^{-\theta } +u_{2,t}^{-\theta } -1)^{-2-\frac{1}{\theta }} } ), \end{aligned}$$
(22)

where \(\theta \) is solved optimally as \(\frac{2\rho _{\tau }}{1-\rho _{\tau }}\) and \(\rho _{\tau }\) is Kendall’s tau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, E. Measuring and Testing Tail Dependence and Contagion Risk Between Major Stock Markets. Comput Econ 50, 325–351 (2017). https://doi.org/10.1007/s10614-016-9587-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-016-9587-y

Keywords

Navigation